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Supplementary Problems.

1. a) If G is a finite abelian group with elements ay, as, - - , ay, prove that ajas - - - a, is an
elements whose square is the identity.

Proof. We can make pairs (a,b) for each a € G where a and b are in inverse relationship
with each other. In re-ordering aias - - - a,, this results out as the product of elements of
order 2. In squaring, we have the identity. O

b) If the G in part a) has no element of order 2 or more than one element of order 2, prove
that ajas---a, = e.

Proof. If G has no elements of order 2, then by the assertion made in a), we get ajas - - - ap, =
e clearly. If G has more than one element of order 2, without lossing of generality, we can
assume that G is the group of elements of order 2 only. So, o(G) = 2" for some n. Let
H be a subgroup of G with order 2"~ 1(Such H always exists). Then [G : H] = 2 so that
G =zH]]H. So for each h € H, there corresponds a zh so that zh-h = rh? = 2. Hence,
the product of all elements in G is 1'2n71, where 27! is even. Therefore, it is exactly the
identity element. O

c¢) If G has one element, y, of order 2, prove that ajas---a, = y.

Proof. Following the assertion made in a), the product ajas - - - a,, results out as the product
of elements of order 2. In our case, it is y alone. O

d) (WILSON’S THEOREM) If p is a prime number show that (p — 1)! = —1(p).

Proof. Consider G = Up. Note that p — 1 is the only element in U, with order 2(In fact,
since Up is cyclic, there must be exactly one element of order d where d | p — 1). Hence,
applying the Problem c), we have (p — 1)! =p —1 = —1 (mod p). O



2. If p is an odd prime and if
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where a and b are integers, prove that p | a. If p > 3, prove that p? | a.
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so that p? | s if p > 3. As p1b, p? | a. Hence proved. O

3. If p is an odd prime, a # 0 (p) is said to be a quadratic residue of p if there exists an
integer x such that 22 = a (mod p). Prove

a) The quadratic residues of p form a subgroup @ of the group of nonzero integers mod p
under multiplication.

Proof. As Q must be a finite set, it is enough to see that elements in Q) are closed under
mod p multiplication. Let a,b € Q. Then there exists integers x,y such that

2> =a (mod p), y*>=0b (mod p) = (zy)* = ab (mod p).
Hence, ab € @ and @ is a subgroup(of U,). dJ
b) o(Q) = (p—1)/2.

Proof. Consider a homomorphism ¢ : U, — @ defined by ¢(x) = x2. This is a well-defined
onto isomorphism(as p is an odd order prime) with kernel K = {1,p — 1}. Consequently,
G/ K is isomorphic to @ with order (p —1)/2. That is, o(Q) = (p — 1)/2. O

c)Ilf e @, n&Q (nis called a non-residue), then ng is a nonresidue.



Proof. Note that @ is a normal subgroup of U, since [U, : Q] = 2. Hence, a coset decom-
position

Up:QHnQ where n € Q)

is possible. Thus, ng is always a nonresidue. O
d) If n1, ne are nonresidues, then ning is a residue.

Proof. Note that from c), every nonresidues are of the form ng, where n is a nonresidue
and ¢ € Q). Hence, n1 = nqi, ny = nge for some q1, ¢ € Q. Thus,

ni-ny = ngi -nge = n’(q1q2) € Q
so that ning is also a residue. O

e) If a is a quadratic residue of p, then o'z = 1(p).

Proof. Since o(Q) = (p — 1)/2, a®Q) = a'T =1 (mod p). O
4. Prove that in the integers mod p, p a prime, there are at most n solutions of 2™ = 1(p)
for every integer n.

Proof. We prove a more general statement by induction. Let f(x) = a,z™ + ap_12" 1 +
-+ a1x+ap be a polynomial of degree n. We claim that f(z) = 0 has at most n solutions
for every integer n. The case n = 1 is trivial. So we assume that the statement is true for
n==k—1. Set f(z) = apx® +ap_12* "1+ +ayx +ap. If f has no solutions, we are done.
If f has x = r as a solution,

f@) = f(r) = apz® +ap_12" 1+ Farz 4 ag — (@t +ap 17"+ Farr + ap)
= ap(z® — ")+ ap_ 1 (2 —rF ) (e — 1)

= (z —r)g(z)

for some polynomial g(x) of degree k — 1. This relation holds over any field. Assuming the
mod p calculation, as g(x) = 0 has at most k& — 1 solutions, f(z) has at most k solutions
mod p. Thus, by induction, setting f(z) = 2™ — 1 we have the required result. ]

5. Prove that the nonzero integers mod p under multiplication form a cyclic group if p is
a prime.

Proof. We know that U, is a finite abelian group. Applying both Problem 4 above and
Problem 38 of Section 2.4 2.5, U, is a cyclic subgroup. O

6. Give an example of a non-abelian group in which (zy)3 = 23y for all z and .



Proof. Consider the 3-Sylow subgroup of GL(3,Z3)

1 Z1 k2
P = 0 1 z3|l|z€Z3,1=1,2,3
0 0 1
It is a non-abelian group since
111 110 1 21 1 20 110 111
01 2 01 0)]=1012]#10 1 2|=1010 0 1 2
0 0 1 0 01 001 0 01 0 01 0 0 1

Also, every element of P3 has order 3 since

3

1 21 2 1 3z1 32904 3z123 1 00
0 1 =z =10 1 323 =10 1 0
0 0 1 0 O 1 0 0 1

for all u; € Z3. Thus, the equation (xy)3 = 23y is clearly satisfied. Hence, Pj is the group
we seek. ]

7. If G is a finite abelian group, prove that the number of solutions of 2" = e in G, where
n | o(G) is a multiple of n.

Proof. Refer the Problem 8. O
8. Same as Problem 7, but do not assume the group to be abelian.

Proof. This is also known as Frobenius Theorem. Check: Frobenius, G. (1903), ”Uber
einen Fundamentalsatz der Gruppentheorie”, Berl. Ber.: 987-991, JFM 34.0153.01. O

9. Find all automorphisms of S3 and .Sy, the symmetric groups of degree 3 and 4.

Solution. We rather prove a more general result, that 27 (S,,) ~ S,, except for n = 6. This
proof is a copy of a paper by IRVING E. SECGAL.

Let A be a automorphism of S,,. Then A takes a class of similar elements(conjugate class)
into a class of similar elements. That is, it takes an element of order m to element of same
order. Suppose (1,7)A = t1(r)---tx(r),k > 1 where each t; are disjoint transpositions.

-1 !
There are nnz) conjugates of (1,2) and m conjugates of t1(r)---tg(r).
Hence,
nn—1) n!
2 2kkl(n —2k)!



If n # 6 this equation is satisfied for no k, except & = 1. Suppose that n # 6. Then
(1,r)A = (ay,by). Ifr #2, (1,2)(1,7r) = (1,2,r) so that (1,2,r)A = (ag,b2)(ar, b,). Since
(1,2,r) has order 3, so has (a2, b2)(ar,b,) and the transpostions (asz, b2)(ar, b,) must have
a letter in common. WLOG, assume that as = a, or by = b,.. However if as = a, and by =
bs,7 # 2,8 # 2, then r # s and (1,2,r)A = (1,2)A-(1,r)A = (a2, b2) - (ar, b)) = (br, az, ba).
Similarly, (1,2,s)A = (as,ba,a2). Hence ((1,2,7)(1,2,s))A = (by,a2,b2)(as,ba,a2) =
(by,as,bz) which is of order 3, while (1,2,7)(1,2,s) = (1,s)(1,r) is of order 2. Hence,

one must have ay = a, for all r or by = b, for all r. We let ay = a, for all r =2,3,--- | n,
then (1,7)A = (ag,b.). Hence A is precisely the automorphism A defined by zA = t~lxt
where
. 1 2. o .. n
“\ay by b, - b))
For A = t~'at when z = (1,7), and the elements {(1,7)} generates S,,. O

10. Prove that a subgroup of a solvable group and the homomorphic image of a solvable
group must be solvable.

Proof. Suppose G is solvable and
G=No>Ni>Nop>--->N,_1 >N, = (e)

where N; is normal in N;_; and N;_1/N; is abelian. Let H be a subgroup of G. We know
that H N V; is normal in H N N;_1. Now by Second Isomorphism Theorem,

HNN;_4 - (HﬂNi_l)Ni

HNN; N; ’
H N N;_1)N;
and since (H N N;_1)N; C N;_1, (NZI)Z is abelian. Thus,
i

H=HNNy>HNNi>HNNy>--->HNN,_1> N, :(6)

so that H is solvable.

Now we show that the homomorphic image of G is solvable. Let G denote the homomorphic
image of a group G. Note that by Lattice Theorem(Third Isomorphism Theorem), for a
homomorphism ¢,

E ~Y g
N N
where N is a normal subgroup of G so that G ~ G/ker¢ and N ~ N/ker¢. Hence,

applying the theorem successively in the chain
G=Ny>N;>---1>N, = (e),

we conclude that each N; is normal in V;_; and N;_; /WZ is abelian. Thus, the homomorphic
image of G is solvable. O



11. If G is a group and N is a normal subgroup of G such that both N and G/N are
solvable, prove that G is solvable.

Proof. Let us consider the subnormal chain of G/N and N given respectively by
G/IN>G>->G. =N, N>N>--->N,=(e).

Consider the subgroup G; of G satisfying G;/N ~ G. Now by Lattice Theorem,

/ Gi_1
Gia N . Gia

G, &G

so that the subnormal chain
G>G1>G> - >Gp=N
is an abelian tower. Consequently, using that N is also solvable,
G>Gi >G> DG, =Np> N1 >---> N, = (e).
Therefore, GG is a solvable group. O

12. If G is a group, A a subgroup of G and N a normal subgroup of G, prove that if both
A and N are solvable then so is AN.

Proof. Note that by Second Isomorphism Theorem,
AN A
N ~NnA
Since A is solvable, so does its subgroup N N A. Since A/(N N A) is a homomorphic image

of A and AN/N being an isomorphic copy of it, it is also solvable. Now applying the result
of Problem 11, as AN/N and N are solvable, AN is solvable. O

13. If G is a group, define the sequence of subgroups G of G by

1) GM = commutator subgroup of G = subgroup of G generated by all aba~'b~! where
a,beq.

2) G) = commutator subgroup of Gt~ if i > 1.

Prove a) Each G is a normal subgroup of G.

Proof. We prove by induction. We already know that commutator subgroups are normal
in G. Suppose we assume that G¢~1 is normal in G, then for any a,b € G0V, g € G,

g(aba™ b1 g™! = ga(gg)b(g  g)a" (g7 g)b g
= (gag ") (gbg ") (ga g 1) (gb"'g7) € GV

which implies that G is normal in G. ]



b) G is solvable if and only if G*) = () for some k > 1.

Proof. Suppose G is solvable. That is, there exists a subnormal chain
G=N0DN1>N2D-'~I>Nk_1I>NkZ(e)

where each N; are normal in N;_; and N;_;/N; is abelian. Note that G is the subgroup
of G~ where if GG /N is abelian, then GW c N. That is, commutator subgroups
are the smallest subgroup in G making the quotient group abelian. Consequently, we have
GM ¢ Ny. Since G(l)/Ng lelty being a subgroup of Ny, it is abelian and hence G2 c Ns.
Thus, we can conclude that G**) ¢ Ny = (e) so that G*) = (e).

Conversely, assume that G(*) = (). Then we can construct a subnormal abelian tower

G=GrGYV>GPps...GH = (¢)
so that G is solvable. —

14. Prove that a solvable group always has an abelian normal subgroup M # (e).

Proof. Assume that G is solvable. Then G*) = (e) for some k > 1. Let this be the first
to be equivalent to trivial group in the subnormal chain of commutator subgroups. Hence,
GED £ () and G*D/G*) ~ GF=D . Since GV /G®) must be abelian and G*~1)
being a normal subgroup of G, G*~1) is the desired abelian normal subgroup of G. O

15. a) Show that each G(;) is a normal subgroup of G' and G;) D GO,

Proof. We make use of similar proof with Problem 13 a). We already know that commu-
tator subgroups are normal in GG. Suppose we assume that G(;_;) is normal in G, then for
any a € G,b € G(;_y), g € G,

g(aba='b" g™ = ga(g ' 9)b(g ' g)a (g7 g)b g
= (gag™")(gbg ") (ga g ") (gb"'g7") € Gy

which implies that G is normal in G(by the induction process). Similarly, on induction,
we assume that G(;_1) D G(~1 . Note that for any a,b € G®, aba='b"! € G since a € G
and b e GU—V ¢ G()- Thus, G;) D G holds for all 4. O

b) If G is nilpotent, prove it must be solvable.

Proof. If G is nilpotent, G(;) = (e) for some integer k£ and G* ¢ Gy = (e) so that
G®*) = (e). Therefore, G is solvable. O

c¢) Give an example of a group which is solvable but not nilpotent.



Solution. Consider the symmetric group Ss. Then it is solvable since
Sz > Az > (e)
but not nilpotent as ng =Agforalli=1,2,--- O

16. Show that any subgroup and homomorphic image of a nilpotent group must be nilpo-
tent.

Proof. Let G be a nilpotent group and H be its subgroup. We claim that H ;) C Gﬁi) for all
i. Hiy C Gy is trivial. So we assume that H(;_1) C G(;—1). Now for any aba~1b~ H
where a € H,b € H(;_y), it follows that a € G,b € G(;_y) so that aba"'b ! € G-
Therefore, by induction, H; C G(; holds for all 4. Since G() = (e) for some integer k,
H,y = (e) so that H is also nilpotent.

Now consider a homomorphism ¢ and its image ¢(G). It is immediate that ¢(G)y) is the
image of Gy. Therefore, if G(;) = (e), then ¢(G) ) = (e) so that ¢(G) is nllpotent O

)

17. Show that every homomorphic image, different from (e), of a nilpotent group has a
nontrivial center.

Proof. Note that a homomorphic image of a nilpotent group is nilpotent. We claim that
every non-trivial nilpotent group has a nontrivial center. Suppose a group G is nilpotent.
Then Gy = (e), G(x—1) # (e) for some integer k. Recall the definition of G/4:

Gy ={aba™'b"'[a € G,b € Gy}

Consequently, G ) = (e) implies that aba b ! =eforalla e Gand b e G (x-1)- Equiva-
lently, ab = ba for all @ € G, b € G(;_1). Since Gy is nontrivial, (e) C G(_1) C Z(G).
This shows that nilpotent group GG has a nontrivial center. ]

18. a) Show that any group of order p”, p a prime, must be nilpotent.

Proof. We make an induction on the size of group G. Suppose o(G) = 1, then it is clearly
nilpotent. So we assume that the statement is true for any p-group with order less than
o(G) = p™. Note that every p-group has nontrivial center. Hence, G/Z(G) is a p-group
with order less then p™, so it is nilpotent. We know that for any surjective homomorphism
¢, the image of Gy, is exactly é(k) where ¢(G) = G. Consider the homomorphism ¢ :
G — G/Z(G), g = gZ(G). Consequently, Gy = (G/Z(G))x) = (e) for some integer k
implying G/ ker ¢ ~ (e) = G() C ker ¢ = Z(G). Therefore, G (41) = {aba='b"1 a €
G,be Gy C Z(G)} = (e) so that G is nilpotent. O

b) If G is nilpotent, and H # G is a subgroup of G, prove that N(H) # H where
N(H)={r € G|zHxz™! = H}.



Proof. Given H is a proper subgroup of G, there exists Gy such that Gy C H but
Gk-1) & H. Choose g € G(;_1)— H. By the definition of G, for any h € H ghg th=! ¢
Gy C H. Consequently, ghg™' € H for all h € H, implying ¢ € N(H). Therefore,
N(H) # H if G is nilpotent. O

19. If G is a finite group, prove that G is nilpotent if and only if G is the direct product
of its Sylow subgroups.

Proof. Suppose G is nilpotent. Let P be a p-Sylow subgroup of G. Set H = N(P). We
know that N(N(P)) = N(P) <= N(H) = H. So, this forces us that H = G = N(P),
and hence P is normal in G. Let o(G) =n = p{*p5? - - - pi* and P; be the (normal) p;-Sylow
subgroups of G respectively. Consequently, G = PP, --- Py, so that G is the direct product
of its Sylow subgroups.

Conversely, we assume that G is the direct product of its Sylow Subgroups. That is,
without of lossing of generality, we can assume it to an outer product(up to isomorphism,
in fact)

G:P1><P2X--~><Pk.
Thus,

Z(G) = Z(P)) x Z(Ps) x -~ x Z(P},) # (e),
G/Z(G) = Pl/Z(Pl) X PQ/Z(PQ) X Pk/Z(Pk)

Note that G/Z(G) is a group of order less than o(G). So that by induction, it is nilpotent.
Now, we apply the assertion made in Problem 18 a). We construct a homomorphism
¢: G — G/Z(G) by g — gZ(G), so that Gy = (G/Z(G))x) = (e) for some integer k.
Now we have that Gy C Z(G), implying G 41y = (e). Thus, G is nilpotent. O

20. Let G be a finite group and H a subgroup of G. For A, B subgroups of G, define A to
be conjugate of B relative to H if B = 2~ ! Ax for some x € H.Prove
a) This defines an equivalence relation on the set of subgroups of G.

Proof. (Reflexivity) A = eAe™! so that A ~ A.

(Symmetry) If A ~ <= B = hAh™! for some h € H, A= h~'Bh so that B ~ A.
(Transitivity) Suppose A ~ B and B ~ C. Then B = hAh~! and C = gBg~! for some
h,g € H. Consequently, C' = (gh)A(gh)~! so that A ~ C.

Hence, the relation ~ defines an equivalence relation on the set of subgroups of G. O

b) The number of subgroups of G conjugate to A relative to H equals the index of N(A)NH
in H.



Proof. 1t is enough to show that Ny(A) = N(A)N H. Note that g € Ny (A) iff and only if
g € Hand gAg~' = Asothat g € N(A). Hence, Ny(A) = N(A)NH. Clearly [H : Ny(A)]
is the number of subgroup of G conjugate to A relative to H. With the result above, we
have [H : N(A)NH] = [H : Ng(A)]. O

21. a) If G is a finite group and if P is a p-Sylow subgroup of G, prove that P is the only
p-Sylow subgroup in N(P).

Proof. Note that P is a p-sylow subgroup of N(P). Hence every conjugate of P under
N(P) is also a p-Sylow subgroup of N(P). Choose any g € N(P). Since gPg~! = P,
conjugate of P under N(P) is sorely P itself. Hence, P is the only p-Sylow subgroup of
N(P). O

1 Remark: We can prove a more general statement: If G is a finite group and P is a
p-Sylow subgroup of G, then for any p-subgroup H of N(P) must lie in P. Observe that
our proof this lemma does not require the Second Sylow Theorem.

Proof. In N(P), P being the normal subgroup of N(P), HP is a subgroup N(P). Clearly,
HP is also a p-group and since

[H|-|P|

gp| =201 o
HP| = e p) =0

(P),

H C HN P sothat H C P. This implies that every p-Sylow subgroup of N(P) is exactly
P, so that P is the only p-Sylow subgroup of N(P). O
b) If P is a p-Sylow subgroup of G' and if a? =e then, if a € N(P), a must be in P.

Proof. Consider the subgroup (a). Note that (a) is a p-group contained in N (P). Therefore
we have that

[@n] =*

so that (a) C (a) NP = (a) C P. Thus, a € P. O

c) Prove that N(N(P)) = N(P).

Proof. Tt is easy to see that N(P) C N(N(P)). Now, choose g € N(N(P)). Observe that
gPg~' C gN(P)g~ = N(P)

so that gPg~! = P. Hence, g € N(P) and N(N(P)) = N(P). O

22. a) If G is a finite group and P is a p-Sylow subgroup of G, prove that the number of
conjugates of P in G is not a multiple of p.

10



Proof. Let C(P) denote the set of conjugates of P in G. We know that o(G) = |C(P)| -
o(N(P)). Since P C N(P), o(G)/o(N(P)) does not have p as an divisor. Therefore,

p1IC(P)l. O

b) Breaking up the conjugate class of P further by using conjugacy relative to P, prove
that the conjugate class of P has 1+ kp distinct subgroups.

Proof. Let S be the set of all conjugates of P of G, where P is a p-Sylow subgroup. In
one’s heart, it is clear that o(gPg~!) = o(P) so that every conjugates of P is also a p-Sylow
subgroup of G. Now consider a normal conjugation group action from P to S(This is what
exactly the notion of relative conjugacy interpreted in the terms of group actions). If we
denote the conjugacy class of Sy € S under P as Cp(Sp), we have

S|= 2 |Cp(s)].

S'eS

In particular, we consider Cp(P). It is trivial that Cp(P) = {P} and hence, |Cp(P)| = 1.
Can there be any other p-Sylow subgroup S’ satisfies |Cp(S")| = 1?7 Suppose |Cp(S")| = 1.
This implies that P C N(S’). Since S’ C N(S’), both P and S’ being a p-Sylow subgroup
of G, it is must that P = S’. Thus, there is no p-Sylow subgroup other than P with
conjugate class size 1. Now by Orbit-Stabilizer Theorem, size of Cp(S’) must be a power
of p, so that p | Cp(S’) for all p-Sylow subgroup S’. Ultimately,

S|=>_ |Cr(s")[ =1+ Y [Cp(S)|=1+kp
S'eS S'#PeS

for some integer k. As |S| being the number of distinct conjugates of P of G, equivalently,
we have shown that size of the conjugate class of P is 1 + kp. O

23. a) If P is a p-Sylow subgroup of G and B is a subgroup of G of order p*, prove that if
B is not contained in some conjugate of P, then the number of conjugates of P in G is a
multiple of p.

Proof. We take the notation used in the Problem 22 b). Now we consider a normal conju-
gation group action from B to S. Recall that Cp(S’) has size 1 if and only if B is contained
in S/, that is, B lies in one of the conjugate of P. But this is a contradiction. Thus, every
conjugacy class has size larger than 1, so that p divides its size. Since |S| being the sum
of sizes of whole conjugacy classes, p | |S]. O

b) Using part a) and Problem 22, prove that B must be contained in some conjugate of P.

Proof. Problem 22 b) implies that the conjugate class of P has size of 1+ kp while Problem
23 a) says that it must have p as a divisor. So, it forces us that B is contained in one of
the conjugates of P. O

11



c¢) Prove that any two p-Sylow subgroups of G are conjugate in G.

Proof. Take B as an arbitrary p-Sylow subgroup of G. Then the result is straightforward.

O]

24. Combine Problems 22 and 23 to give another proof of all parts of Sylow’s Theorem.

Proof. Problem 23 ¢) is the exact statement of Second Sylow Theorem. Now from this, we
know that every p-Sylow subgroups of G are conjugate so that by the result of Problem
22 b), there are 1 + kp distinct p-Sylow subgroups in G. This gives the another proof of
Third Sylow Theorem. O

25. Making a case-by-case discussion using the result developed in this chapter, prove that
any group of order less than 60 either is prime order of has a nontrivial normal subgroup.

Proof. e o(G) =1: Trivial

o(G) =2,3,5,7,11,13,17,19, 23,29, 31,37,41,43,47,53,59 : G is of prime order.

o(G) =4,8,9,16,25,27,32,49 : G is of order p™, n > 1. So it has normal subgroups
of order p™~1.

o(G) = 6,10, 14, 15,21, 22,26, 33, 34, 35, 38,39, 51, 55,57,58: G is of order pq, where
p, q are distinct prime and p < ¢q. Then G has a normal g-Sylow subgroup.

o(G) = 12,18,20, 28,44, 45,50,52: G is of order p?q, where p, q are distinct primes.
Then G has either a normal p-Sylow subgroup or a normal g-Sylow subgroup.

o(G) = 30,42: G is of order p,q,r where p,q,r are distinct primes and p < ¢ < r.
Then G has a normal r-Sylow subgroup.

o(G) = 24 : Let Py be the 2-Sylow subgroup of G. Then o(FP2) = 8 and hence
24 1[G : Py] = 3! = 6, so that P> must contain a nontrivial normal subgroup of G.

o(G) =40 : Let P5 be the 5-Sylow subgroup of G. since 1+ 5k | 8 for k = 1 only, Ps
is normal in G.

o(G) = 48 : Let P, be the 2-Sylow subgroup of G. Then o(P2) = 16 and hence
48 1[G : P;] = 3! = 6, so that P» must contain a nontrivial normal subgroup of G.

o(G) = 54 : Tt has a normal 3-Sylow subgroup as its index in G is 2.

o(G) = 56 : If it has normal 7-Sylow subgroup, then it is done. If not, then it must
have 8 disitnct 7-Sylow subgroups, so that G has 48 elements of order 7. There are
8 elements left for G and since the order of 2-Sylow subgroup is 8, 2-Sylow subgroup
is the required normal subgroup of G.

O
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26. Using the result of Problem 25, prove that any group of order less than 60 is solvable.

Proof. If a group G is abelian or of order p™ where p is a prime, then G is solvable. Also,
we make use of the result of Problem 11 to check the solvability of G.

27. Show that the equation z%az = a~

o(G) =1 : Trivial

o(G) = 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29, 31, 32,37,41,43,47,49, 53,59 :
G is of order p™. Hence solvable.

o(G) = 6,10,14, 15,21, 22, 26, 33, 34, 35, 38, 39, 51, 55, 57, 58: G is of order pq, so has a
normal ¢-Sylow subgroup ). Also, the order of G/Q is prime, hence G/Q is solvable.
Applying Problem 11, G is solvable.

o(G) = 12,18,20, 28,44, 45,50,52: G is of order p>q, where p, q are distinct primes.
Then G has either a normal p-Sylow subgroup or a normal g-Sylow subgroup. Let
N be the normal Sylow subgroup. Then G//N has order p? or ¢, which implies that
G/N is solvable. Consequently, G is solvable.

o(G) = 30,42: G is of order p,q,r where p,q,r are distinct primes and p < ¢ < r.
Then G has a normal r-Sylow subgroup R. Then G/R is a group of order pq, so that
it is solvable. Thus, G is solvable.

o(G) = 24 : G contains a nontrivial normal subgroup of order 2*, k¥ < 3. Then G/N
is a group of order 3,2 - 3,22 - 3 where in any cases, it is solvable. Hence, G is also
solvable.

o(G) = 40 : The 5-Sylow subgroup Ps is normal in G, G/Ps has order 23 so that
G/ Ps is solvable. Thus, G is solvable.

o(G) = 48 : Let P, be the 2-Sylow subgroup of G. Then G/P; has order 3,2 - 3,22 -
3,23 - 3. But in either cases G/ P, is still solvable. So does G.

o(G) = 54 : G has normal 3-Sylow subgroup with index 2. Thus, G is solvable.

o(G) = 56 : If it has normal 7-Sylow subgroup P;, G/Ps is a group of order 8 and
hence solvable. If it has normal 2-Sylow subgroup P», G/ P, is a group of order 7. So
in either cases, GG is solvable.

O]

1 is solvable for z in the group G if and only if @ is

the cube of some element in G.
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Proof. Multiplying az~' on the left and az on the right of the given equation,

(az™NH2?azx(az) = (ax™a  (ax) <= (az)® =a

so that a is a cube of some element in G. Conversely, assume that a = b for some b € G.
Let 2 = a~'b. Then

=a tba % (b- b7
=atba"tab b = a7t

Therefore, we conclude that the given equation is solvable if and only if a is a cube of an
element in G. ]

28. Prove that (1,2,3) is not a cube of any element in S,,.
Proof. If 03 = (1,2,3) for some o € S,,, then ¢ is a permutation of order 1,3 or 9.
e If (o) =1, then o = e, a contradiction.

e If o(0) = 3, then o is a product of disjoint 3 cycles. But on cubing the 3-cycles we
get an identity. Therefore a contradiction.

e If o(0) =9, then o is a product of disjoint 3 cycles with at least one or more 9 cycles.
But on cubing this, the 3 cycles vanishes while the 9 cycle results out with product
of 3 disjoint 3 cycles, which is again a contradiction.

Therefore, (1,2, 3) is not a cube of any element in S,. O

29. Prove that zaxz = b is solvable for z in G if and only if ab is the square of some elements
in G.

Proof. Multiplying a on left of the equation we have azar = ab <= (az)?> = ab.
Conversely, if ab = t? for some t € G, let z = a~'t so that

raxr = (a 't)a(a't) = a " (ab) = b.

Thus, xzax = b is solvable for x in G if and only if ab is the square of some elements in
G. O

30. If G is a group and a € G is of finite order and has only a finite number of conjugates
in G, prove that these conjugates of a generate a finite normal subgroup of G.
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Proof. Let S = {s1, 2, -, sk} denote the set of all conjugates of a. Note that o(s;) = o(a).
Let o(a) = n. Suppose (S) is the set generated by S. (S) is clearly a normal subgroup.
We claim that (S) has finite order. If we choose 1 # s € (5), then s = spits'2 - - s
where 1 < a; < k. In general, there exists an expression of s with shortest length r, with
one appears as the first in the lexicographic ordering of r-tuples (ai,as,---,a,). Since
the given S is a normal subset, there can be shifts of ordering of s;’s in the expression
of each element s. This forces us that a1 < as--- < a,. Hence, there can be at most

Hle o(s;) = n* elements is (9). O
31. Show that a group cannot be written as the set-theoretic union of two proper subgroups.

Proof. Suppose G = AU B where A, B are proper subgroups of G. Then A ¢ B and
B ¢ A. So, choose a € A— B and b € B— A. Clearly, ab € G so that ab € A or ab € B.
Suppose ab € A. Then a~'ab = b € A. But by the definition of b, b € A, a contradiction.
Hence ab ¢ A. Similarly, ab ¢ B either. But this contradicts that ab € G. Thus, a group
cannot be written as the set-theoretic union of two proper subgroups. O

32. Show that a group G is the set-theoretic union of three proper subgroups if and only
if G has, as a homomorphic image, a noncyclic group of order 4.

Proof. Suppose G is the set theoretic union of three proper subgroups L, M and N. That
is, G = LU M U N. Note that a group is not an union of two proper subgroups, so there
always exists an element which is not in the union of two.

First we claim that LN M = LNN. Letue LNM. If u g N, let n € N —(LUM).
Then un € N otherwise u~'un = n € N, a contradiction. Also, un € L, since n ¢ L.
Similarly, un ¢ M. Therefore, un ¢ L U M U N = G, a contradiction. This forces us that
LN M =LnNN. Moreover, with similar method, we can conclude that LN M =LNN =
MNN=LNMNN.

Now we show that any product of z,y lying outside of L must lie in L itself. That is, if
x,y € L, then zy € L. Note that x and y each lie in at most one of M and N as MNN C L.
So suppse x € M — (LUN) and y € N — (LU M). Then clearly zy ¢ M U N and hence
xy € L. WLOG, assume that z,y € M —(LUN). Let z € L— (M UN). Then zx ¢ LUM
so that zv € N — (LUM). Nowasy € M — (LUN), (zx)y € M UN, zzy € L. Since
2z € L, 27 Y2zxy = xy € L. Moreover, we can change the role of L into M or N, as they play
symmetrically.

Now we claim that LN M N N is normal in G. Choose x € LN M NN and g € G. If g
lies in more than one of L, M and N, than ¢ € LN M N N so that gzg~' € LN M N N.
So we assume that g lies only at one of the L, M or N. Suppose g € L — (M U N), then
gr & M, g~' & M so that grg~! € M. Likewise, gr € N, g~' & N so that gzg~' € N.
Thus gzg~' € MNN =LNMNN, so that LN M NN is normal in G.

We now claim that G/(LNM NN) is isomorphic to Klein-4 group. The nontrivial elements
of G/(L N M N N) corresponds to cosets represented by elements that lie exactly one of
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L,M or N. If g and ¢’ lies in L but not in M UN, then g(LNMNN) =g (LNMNN)
since g¢’~! € (LN M N N). That is, we have exactly one coset corresponding to elements
in L but not in (LN M N N). So in total, there can be 4 elements in G/(L N M N N) with
each having order 2. So, G/(L N M N N) is isomorphic to Kj.

Conversely, since K4 is an union of three proper subgroups, if G/K ~ K4 = LUM U N,
then the pullbacks of each L, M and N(for L, the pullback is L', L'/K ~ L) are proper
with union equal to G. O

33. Let p be a prime and let Z, be the integers mod p under addition and multiplication.
Let G be the group <Ccl Z) where a, b, c,d € Z, are such that ad = bc = 1. Let

o={(o 1) )}
and let LF(2,p) = G/C.

a) Find the order of LP(2,p).

Solution. Note that o(GL(2,p)) = (p*> — 1)(p? — p). Thus G = o(GL(2,p))/(p — 1) =

(p— D)p(p +1). Consequently, o(LF(2,p)) = o(G)/o(C) = (p—l);g(p—l—l) ¥

b) Prove that LF(2,p) is simple if p > 5.

Proof. Simplicity of Projective Linear Group for the case n = 2 is also know as Jordan-
Moore Theorem. O

34. Prove that LF(2,5) is isomorphic to As, the alternating group of degree 5.

Proof. Every simple non-abelian group of order 60 is isomorphic to As. Calculating the
Sylow subgroups of each, we can conclude the given fact easily. O

35. Let G = LF(2,p); according to Problem 33, GG is a simple group of order 168. Determine
exactly how many 2-Sylow, 3-Sylow, and 7-Sylow subgroups there are in G.

Solution. There are 7 2-Sylow subgroups, 28 3-Sylow subgroups and 8 7-Sylow subgroups.
O
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