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Problems in Section 5.1.

1. Prove that the mapping v : F[z] — F(a) defined by h(x)y = h(a) is a homomorphism.

Proof. Let f(z),g(x) € Flz] where

flz)=ap+ a1z + - aya”,

g(x) =by+ brx + - byz™.
Let ¢; = a; + b; for each valid ¢. In this case a; = 0,b; = 0 for i > n+ 1,5 > m + 1.
Consequently, by setting f(z) + g(z) = Zf et

t

(f(x)+g(@) =D cia’ = (a;+b;)a’
=0 ]

=0
= (Z(ai)al + Z(bz)az>
=0 1=0
= f(a) +g(a) = f(2)¢ + g(2).
Similarly for multiplication, set ¢; = Y% aghi_y so that f(z)g(z) = """ ¢;a?. Conse-
quently,
m+n '
(f(@)g(x)p = Y cia’ = f(a)g(a) = f(@)¢ - gx)y.
=0
Therefore, given v is clearly a homomorphism. O

2. Let F be a field and let F[z] be the ring of polynomials in z over F'. Let g(x), of degree
n, be in Fx] and let V' = (g(x)) be the ideal generated by g(z) in F[x]. Prove that F[z]/V
is an n-dimensional vector space over F'.



Proof. We claim that the set
B={1+V,z+V,2>+V, -+ 2" '+ V}

is a basis of F[z]|/V. Suppose f(z) +V € Flz]/V. Then by division algorithm, there is
unique r(z) € F[x] such that f(x) = r(x) mod V with deg(r(x)) < n = deg(g(zx)). So, we
can write

r(z) =ro4+rie+--Frpqz" !

for some r; € F', 0 < i <n — 1. Clearly,

f($)+V:r(:U)+V:r0+r1x+...+rn_1xn—1+V
:T0(1+V)+T1($+V)+"-Tn,1(x”_1_|_V)

so that § spans F[z]/V. Now we show that f is linearly independent. Suppose
aw(l+V)4+a(z+V)+-+a, (" '+ V)=ay+az+ - a, 12" 1+ V=V

for some a; € F which are not all zero. Set a(x) = ag + a1 + --- + a,_12""!. Note
that a(x) € V if and only if a(z) = d(x)g(x) for some polynomial d(z) € F[z]. But we
know that deg(a(xz)) =n —1 < n < deg(d(x)) + deg(g(x)) = deg(d(x)g(x)) so that it is
impossible that a(z) € V, unless a; = 0 for all i. Hence, 3 is a basis for F[z]/V, and the
dimension of F[z]/V is n. O

3. a) If V is a finite dimensional vector space over the field K, and if F' is a subfield of
K such that [K : F] is finite, show that V is a finite-dimensional vector space over F' and
that moreover dimp (V) = (dimg (V))([K : F]).

Proof. Let 81 = {v1,v2,---v,} be a basis of V over field K, and Sy = {wy,ws, - wy,} be
a basis of K over field F. We claim that

B = {Ulwlavlana”' , V1Wm, V2W1, * + , V2Wm, *** , UnW1, " - 7Unwm}

is a basis of V over field F. Let v € V. Then viewing V as a vector space over K,
v = k1vy + kovg + - - - kpu, for some k; € K. Now for each k;, viewing K as a vector space
over I, k; = fpwi + fiowa + -+ - + fimWm, where fi; € F,i=1,---,n, j=1,2,--- ,m.
Plugging in the k;’s in v, we have

v = (friw1 + frowa + - - fimwm)v1 + (forwy + fraws + -+ fowm)ve + - - -
+ (fnlwl + fn2w2 + - fnmwm)vn

= fij(viwy).
i



Hence we conclude that S spans V over field F. Moreover, suppose Z” fij(viw;) = 0 for
some f;; € F'. This is equivalent to

Zfij(viwj) =0 <~ Z <Z fijvi> w; = 0.
0] J i

Since (2 is a basis, the above forces us that ), (fijv;) = 0 for each j. But since f is also
a basis, it follows that f;; = 0 for each 7 and j. Hence, 3 is linear independent, and forms
a basis for V over F. Moreover, the relation of dimp(V) = (dimg(V))([K : F]) holds
clearly. O

b) Show that Theorem 5.1.1 is a special case of the result of part a).

Proof. Just viewing the relationship of fields and subfields as vector spaces over some fields,
the result is straightforward. O

4. a) Let R be the field of real numbers and @ be the field of rational numbers. In R, v/2
and /3 are both algebraic over (). Exhibit a polynomial of degree 4 over @ satisfied by

V2 + /3.
Solution. The polynomial f(x) = 2* — 1022 + 1 satisfies v/2 + /3. O
b) What is the degree of V2 4+ /3 over Q? Prove your answer.

Proof. We show Q(v2 + v3) = Q(v/2,v/3). That Q(v2 + v3) C Q(v/2,V/3) is clear. So
we now show the opposite inclusion. It is enough to show that \/5, V/3 are in Q(\/§ + \/§)
Note that

(V2 +3)? = 11vV2 4+ 9V/3,

so that 11v/2+ 93 — 9(\/§+ \/3) = 2v/2 and hence, V2 € Q(\@—F \/g) Similarly for /3,
V3 € Q(V2 ++/3). Therefore, Q(v2 +v3) = Q(v/2,/3). Note that v/3 & Q(v/2), so that
22 — 3 is still the minimal polynomial in Q(v/2) satisfying v/3. Thus, [Q(v/2,V3), Q(v/2)] =
2. Ultimately from

[Q(V2,v3),Q] = [Q(V2,v3). Q(vV2)][Q(v2),Q] =2 -2 =4,
we conclude that [Q(v/2 + V/3),Q] = 4. O

c¢) What is the degree of v/2v/3 over Q?

Proof. Note that v/2v/3 = v/6 and f(z) = 22—6 is the minimal polynomial over @ satisfying
\/6~ Hence7 [Q(\/i\/g; Q] =2. 0



5. With the same notation as in Problem 4, show that v/2 + ¢/5 is algebraic over @ of
degree 6.

Proof. We know that Q(ﬁ) and Q(%) are subfields of Q(v/2 4+ v/5), where each of their
degree over @ are 2 and 3 respectively. Therefore, 6 | [Q(v/2 4+ V/5), Q]. moreover,

f(z) = 2% — 62° — 1023 + 1222 — 60z 4 17
satisfies v/2 + /5. Thus, [Q(v/2 + V/5), Q] < 6. Therefore, [Q(v/2 + v/5), Q] = 6. O
6. a) Find an element u € R such that Q(v/2, V/5) = Q(u).

Solution. We claim that Q(v/2, V5) = Q(v2 + V/5). Q(v2+ V/5) C Q(v/2,V/5) is clear.
We show the opposite inclusion. It is enough to show that v/2, V/5 € Q(v/2 + v/5). Let
x:\/i—l—\?/gandy:\/?. Then

(z—y)P =5 = 2332y + 32> —y® =23 - 32%y + 62 —2y="5

_:173+6:L"—5
y= 322 +2

so that y = v/2 € Q(z) = Q(v/2 + V/5). Using this fact, we have

@%:3¢ﬂﬁ—a)—@3—w+a¢®

6
so that /5 € Q(v/2 + V/5). Therefore, Q(v/2, V/5) = Q(v2 + V/5). O

b) In Q(v/2, ¥/5) characterize all the elements w such that Q(w) # Q(v/2, V/5).

Solution. Consider Q(w) for some w. Then Q(w) = Q(v/2, ¥/5) if and only if 1, w, w?, w?, w*, w®
spans Q(v/2, V/5). O

7. a) Prove that F'(a,b) = F(b,a).

Proof. 1t is clear that F'(b) C (F'(a),b). As (F(b),a) being the smallest field containing F'(b)
and a and (F'(a), b) being a field containing F'(b) and a, it follows that (F'(b),a) C (F(a),b).
The opposite inclusion follows similarly. Therefore, (F'(b),a) = (F(a),b). Consequently,
by the definition,

F(a,b) = (F(a),b) = (F(b),a) = F(b, a).

b) If (i1,i9,- - ,i,) is any permutations of (1,2,---,n), prove that

F(ala"' 7an) :F(ailaaiza"' aain)'



Proof. We prove induction on the size of n, the length of permutation of (1,2,--- n).
Case when n = 2 is the exactly the Problem 7 a). So we assume that F(ai, - - ,a,) =
F(aj,, iy, - ,a;,) holds for some n. Suppose we are considering the permutation (i1, ig, - - -
By the induction hypothesis,

F(ail’aiza"' 7ainvain+1) = (F(ai17ai27"' 7ain)vain+1)
= (F(aihaaij27 e >aijn)7ain+1)
for some j; € {1,2,---,n+ 1}, ij, < ij, < --- < ij,. Then i, is either n +1 or n. If

ij, = n, we are done as it was mandatory that a;,_ , = any1. If i;, = n + 1, by setting
G = F(aijl y @ijy sttt Qi) )7

(F(aijl,aih, ceag ), a0 ) = (Glag, ), a6, )
= G(aijn ) ain+1) = G(ain-s-l? aijn)
= ((F(ai;, s @igys iy )y Qi )5 @iy )
= (Flai;, @igy s o @iy, 5 Qi) 0i,)
= (F(a1, - ,apn),ant1) = Flay, - ,an,ant1).
Hence by induction, we conclude that F'(ai,--- ,an) = F(a;,, a4, - ,a;,) for all permuta-
tion (i1,49, - ,in) of (1,2,--- ,n). O

8. If a,b € K are algebraic over F' of degrees m and n, respectively, and if m and n are
relatively prime, prove that F(a,b) is of degree mn over F.

Proof. From the fact that F(a), F(b) C F(a,b), lem(m,n) = mn | F(a.b). But we know
that F'(a,b) < mn. Therefore, [F(a,b), F| = mn. O

9. Suppose that F is a field having a finite number of elements, q.
a) Prove that there is a prime number p such that a+a+---4+a =0 for all a € F.

Proof. As F' an additive group with order ¢, ¢ -1 = 0. Thus, F is of finite characteristic,
with p, prime as its characteristic. Hence, pa = 0 for all a € F. O

b) Prove that ¢ = p™ for some integer n.

Proof. Let ¢ : Z — F defined by ¢(x) = x. Then its kernel must consist of pZ, and since
PZ being the maximal ideal in Z, the kernel is exactly pZ and hence Z, ~ ¢(F). That is, F
contains Fp, an isomorphic image of Z,, as its subfield. Now we can consider F' as a vector
space over Fy. Suppose dimp, F' = [F': Fy] = n. Then there are p™ possible elements in F'.
Hence, ¢ = p” for some n. ]

c) If a € F, prove that a? = a.

7in7 Z"fl"rl)'



Proof. Considering F' as a multiplicative group of order ¢ — 1 = p™ — 1, it is clear that
a? = a. O

d) If b € K is algebraic over F, prove b9 = b for some m > 0.

Proof. Let [F(b) : F| = m for some m > 0. Then F(b) is an extension field of order ¢".
Applying the assertion made in Problem 9 ¢), b9 = b. O

10. If a is any algebraic number, prove that there is a positive integer n such that na is an
algebraic integer.

Proof. Let f(x) € Q[z] such that f(a) = 0 with degree k. It is possible to reduce f(z) into
a polynomial g(x) € Z[x] such that g(a) = 0. Denote g; to be the coefficients of z* of g(z).
Suppose gr = ¢ > 0(without loss of generality, ¢ can be taken positive) it follows that

k k
¢"g(@) =) (¢ gt = (¢ gi)(ga)
=0 =0
k

— 3 () (ga) = 0.

o
I

It is clear that for each 4, ¢*~"~1g; € Z. Further, ¢*~'g(x) is monic. Thus, ga is an algebraic
integer. O

11. If the rational number r is also an algebraic integer, prove that » must be an ordinary
integer.

Proof. Direct application of Problem 5 Section 3.10 gives that r is an integer. O

12. If a is an algebraic integer and m is an ordinary integer, prove
a) a + m is an algebraic integer.

Proof. Let f(x) € Z[x] be the monic polynomial satisfying a. Let g(z) = f(z —m) € Z[x].
Consequently, g is monic and g(a + m) = f(a) = 0, so that a + m is also an algebraic
integer. O

b) ma is an algebraic integer.

Proof. Let f(x) € Z[x] be the monic polynomial satisfying a, with degree k. Let g(x) =
mF f(z) € Z[z]. Denoting the coefficients of x’ of f(x) by a;, it follows that

so that ma is an algebraic integer. O



13. If a is an algebraic integer satisfying a® + a + 1 = 0 and 3 is an algebraic integer
satisfying 82 + B — 3 = 0, prove that both o + 3 and af3 are algebraic integers.

Proof. We use the method developed in Problem 14: Let p = a + 3. Then the Sylvester
matrix M satisfying

MU:pU, U:(l,OJ,OéQ,/B,Oéﬁ,OéZB)t

has the property that its characteristic polynomial ¢s(x), which is also monic, satisfies p.
That is, ¢ar(p) = 0. So we compute M and find its characteristic polynomial. Observe
that:

1 0O 1 0 1 0 0O 1
a 0O 0 1 0 1 0 a
a? -1 -1 0 0 0 1 a?

pv = (a+B) 5113 o0 0-1 1 o 3 = M.
af 0 3 0 0 -1 -1 af
a?B 0 0 3 -1 -1 -1/ \a?8B

Hence, ¢ps(x) = det(M — zlg) = 2% + 32° — 4a* — 1123 + 2522 + 522 — 39. Hence, a + 3
satisfies ¢p7(x) and so that it is an algebraic integer. For ¢ = af3,

1 0 0O 0 O 1 0 1
« 0 0 0 O 0 1 «
a? 0 0 0 -1 —1 0 a? ,
w=0@+81 5 1=10 3 0 0 -1 0 g | =Mv
af 0 0 3 0 0 -1]|as
a?p -3 -3 0 1 1 0 a?p
so that ¢y (z) = det(M' — xlg) = 25 + Tz* — 1023 + 922 — 9 — 27. Hence, a3 satisfies
¢y (x) and so that it is an algebraic integer. O

14. a) Prove that the sum of two algebraic integers is an algebraic integer.
b) Prove that the product of two algebraic integers is an algebraic integer.

Proof. We prove a more general statement: Set of algebraic integers forms a ring. Let
Zla, B) = {f(e, B) : f(z,y) € Z]z,y]}. It suffices to show that p € Z[a, 5] is an algebraic
integer. Given that

A" +ad" P+ aad™ a4 a, =0

B™ 4+ b 4™ 24 by 184 b =0



where each a;,b; € Z,

1 2

—aa" " — - — a1 —an
B = —by Y — bya™ % — - — by 1B — by,

so that Z[«, (] is set of linear combinations of a’#7, 0 <i<n—1,0<j <m —1 over Z.
Note that for each 0 <k <n—1,0<1<m— 1, pa*p' € Z]a, ] so that

kol kil o
pa” Bt = E cmazﬁj.
/L'Lj

o = —a1a™”

Let
_ _ _ _1zd
U:(Ozoﬁo O5150 e a 1,8 Ozoﬂl e 15 el 1Bm 1) ’
0,0 0,0 0,0 0,0 0,0 0,0
€0,0 €1,0 T Cn—1,0 €0,1 T Ch—11 " Cp—1m—1
1,0 1,0 1,0 1,0 ) 1,0
€0,0 €1,0 Cn—1,0 €0,1 Ch—11 " Cp—1m—1
n—1,0 n—1,0 n—1,0 n—1,0 n—1,0 n—1,0
€0,0 €1,0 Ch—1,0 Co,1 Ch—1,1 G 1m—1
0,1 0,1 0,1 0,1 0,1 :
M = 0,0 €10 Cn—1,0 0,1 Cho11 7 Cncime—1 |
n—1,1 n—1,1 n—1,1 n—1,1 n—1,1 n—1,1
€0,0 €10 T Cn—1,0 Co,1 T Ch—1,1 " Cp—1m—1
n—1,m—1 n—1,m—1 n—1,m—1 n—1,m—1 n—1,m—1 n—1,m—1
€00 €10 T Cp10 Co, Gt Cn—1,m—1

so that we have the equivalent system of linear equations
pv = Mv

as above. Since v # 0, we can consider p as an eigenvalue of the matrix M. Thus, the
characteristic polynomial ¢ps(x) of M satisfies p. Recall that ¢as(x) is monic polynomial
in Z. Hence, p is an algebraic integer. O

15. a) Prove that sin 1° is an algebraic integer.
Proof. By De moivre’s Theorem,
[cos 1° +isin1°]%° = 0.

Now consider the real part of the above. Then we obtain

o~ (90 L 790 20—
> (k > (cos1°)PF(sin1°)F = >~ <k ) (1—-sin?1°)"7 (sin1°)F = 0.
k:even k:even
Therefore, sin 1° is an algebraic number. O



b) From part a) prove that sinm® is an algebraic number for any integer m.

Proof. Similarly as the part a),
[cosm® + isinm®)'® = +1.

Considering the real part of the above, we obtain

180 180

180 180 -
Z < f )(cos7710)180_1“(sinmo)’g = Z < f >(1 —siano)y(sinmo)k = +1.

k:even k:even

This implies that sinm® is also an algebraic number.



