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Problems in Section 5.8.

1. In S5 show that (1, 2) and (1, 2, 3, 4, 5) generate S5.

Proof. Refer the Problem 11, Section 2.10.

2. In S5 show that (1, 2) and (1, 3, 2, 4, 5) generate S5.

Proof. If we could generate (2, 3), then (2, 3)−1(1, 3, 2, 4, 5)(2, 3) = (1, 2, 3, 4, 5). Thus, it is
enough to show that (2, 3) can be generated by (1, 2) and (1, 3, 2, 4, 5). Note that

{(1, 3, 2, 4, 5)−j(1, 2)(1, 3, 2, 4, 5)j : j ∈ Z} = {(1, 2), (3, 4), (2, 5), (4, 1), (5, 3)}

(1, 2)(1, 3, 2, 4, 5) = (1, 4, 5)(2, 3) and (1, 2)(2, 5)(4, 1) = (1, 5, 2, 4). Moreover,

(1, 5, 2, 4) · (1, 4, 5)(2, 3) · (5, 3) = (2, 5, 3) · (5, 3) = (2, 3).

Therefore, (1, 2) and (1, 3, 2, 4, 5) generates S5.

3. If p > 2 is a prime, show that (1, 2) and (1, 2, · · · , p− 1, p) generates Sp.

Proof. Refer the Problem 11, Section 2.10.

4. Prove that any transposition and p-cycle in Sp, p a prime, generates Sp.

Proof. Let σ = (a, b, · · · , c, d) and τ = (e, f) be an p-cycle and a transposition in Sp
respectively. Note that, as σ is a p-cycle and hence, for some 1 ≤ k ≤ p− 1, σk sends e to
1. Thus, without lossing of generality, we can assume that τ = (1, f ′). Now rearranging σ
as σ = (1, a′, · · · , c′, d′), there exists 1 ≤ t ≤ p − 1 such that σt = (1, f ′, · · · , ). Note that
as p being a prime, (1, f ′, · · · ) is also a p-cycle. Just as we have done at the beginning,
rearranging {1, 2, · · · , p} gives f ′ = 2 and moreover, (1, 2, · · · , p− 1, p). Now applying the
Problem 3, we conclude that σ and τ generates Sp.
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5. Show that the following polynomials over Q are irreducible and have exactly two nonreal
roots.
a) p(x) = x3 − 3x− 3.

Proof. Applying Eisenstein’s criterion, we conclude that p(x) is irreducible over Q. Now
by differentiating p(x), we have p′(x) = 0 ⇐⇒ x = ±1. Since p(−1) = −1 < 0, p(1) = −5
where these points are local maximum and minimum in R respectively. Thus, there occurs
only one real root, and hence two nonreal roots.

b) x5 − 6x+ 3.

Proof. Applying Eisenstein’s criterion, we conclude that p(x) is irreducible over Q. Now by

differentiating p(x), we have p′(x) = 0 ⇐⇒ x4 = 6
5 ⇐⇒ x = ± 4

√
6
5 . Since p(− 4

√
6
5) > 0,

p( 4

√
6
5) < 0 and lim

x→±∞
p(x) = ±∞, investigating the structure of the graph we conclude

that p(x) has only three real roots. Hence, it admits exactly two nonreal roots.

c) x5 + 5x4 + 10x3 + 10x2 − x− 2.

Proof. By substituting x by x− 1 we obtain x5 − 6x+ 3. We know that this is irreducible
at Q. Further, parallel transition of the graph of a polynomial does not occur in changes of
the nature of its roots. Hence, as similarly as b), given polynomial has exactly two nonreal
roots.

6. What are the Galois groups over Q of the polynomials in Problem 5?

Proof. For a), it is S3 and for b) and c), each are S5 respectively.

7. Construct a polynomial of degree 7 with rational coefficients whose Galois group over
Q is S7.

Proof. Let p(x) = x7 − 10x5 − 15x2 + 5. Then it clearly irreducible in Q and has exactly
two nonreal roots. Thus, the Galois group of p(x) over Q is S7.
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