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Problems in Section 5.6.

† Remark As Herstein makes use of right-multiplication notation for the automorphism in
this section(he usually used left-multiplication notation), we shall follow the same method
as of his here.

1. If K is a field and S a set of automorphisms of K, prove that the fixed field of S and that
of S(the subgroup of the group of all automorphisms of K generated by S) are identical.

Proof. Let KS and KS denote the fixed field of S and S respectively. Since S ⊂ S, it is
clear that KS ⊂ KS . We show that the opposite inclusion also holds. Choose x ∈ KS . For
any arbitrary σ ∈ S, σ is of the form

σ = σi11 σ
i2
2 · · ·σ

ik
k , σj ∈ S, ij ∈ Z .

Since x ∈ KS , σ
ij
j (x) = x for each j = 1, 2, · · · k. Therefore, σ(x) = σi11 σ

i2
2 · · ·σ

ik
k (x) = x.

Hence, x ∈ KS . Combining the results, we have KS = KS .

2. Prove Lemma 5.6.2.

Proof. Let σ, τ ∈ G(K,F ). Choose a ∈ F . Recall that the composition of automorphism
yields again an automorphism. Also, στ(a) = σ(a) = a. Hence, G(K,F ) is closed under
functional composition(multiplication). No wonder, associativity, existence of identity and
inverse elements are naturally induced from A(K). Therefore, G(K,F ) is a subgroup of
A(K).

3. Using the Eisenstein criterion, prove that x4 + x3 + x2 + x + 1 is irreducible over the
field of rational numbers.

Proof. Refer the Problem 3, Section 3.10.

4. In Example 5.6.3, prove that each mapping σi defined is an automorphism of F0(w).
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Proof. We can prove this either by direct calculation or using some theorems in Galois
theory. We take the later one. Given mapping σi : F0(w) → F0(w) is defined in a way
that it fixes F and sends a root w of f(x) = x4 + x3 + x2 + x + 1 into another root wi

of f(x). Note that f(x) is irreuducible in F0. Hence applying Lemma 5.6.3, there exists
an automorphism in F0(w) which fixes F and sending w into wi, where w is a root of
f(x). But such obtained automorphism is in fact, coincides with σi. Thus, each σi are
automorphisms.

5. In Example 5.6.3, prove that the fixed field of F0(w) under σ1, σ2, σ3, σ4 is precisely F0.

Proof. We can prove this either by direct calculation or using some theorems in Galois
theory. We take the later one. With the same notations in Problem 4, we conclude that
o(G(F0(w), F )) ≥ 4. Now by Fundamental theorem of Galois theory, F0(W ) being splitting
field of f(x), o(G(F0(w), F0)) = [F0(w) : F ] = φ(5) = 4. Since we have already exhibited
4 automorphisms σi ∈ G(F0(w), F0), fixed field of F0(w) under σi is precisely F0.

6. Prove directly that any automorphism of K must leave every rational number fixed.

Proof. We give additional condition that K is a field of characteristic 0. Now refer Problem
12, Section 5.3. Here we can find that from the condition σ(1) = 1, we can derive that
σ
(
n
m

)
= n

m for every n,m 6= 0 ∈ Q.

7. Prove that a symmetric polynomial in x1, · · · , xn is a polynomial in the elementary
symmetric functions in x1, · · ·xn.

Proof. Proof using lexicographic order can be found here: https://proofwiki.org/wiki/
Fundamental_Theorem_of_Symmetric_Polynomials

8. Express the following as polynomials in the elementary symmetric functions in x1, x2, x3:

a) x21 + x22 + x23.

Solution. Note that x21 + x22 + x23 = (x1 + x2 + x3)
2 − 2(x1x2 + x2x3 + x1x3). Since

a1 = x1 + x2 + x3 and a2 = x1x2 + x2x3 + x1x3,

x21 + x22 + x23 = a21 − 2a2.

b) x31 + x32 + x33.
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Solution. Recall the identity

x31 + x32 + x33 − 3x1x2x3 = (x1 + x2 + x3)(x
2
1 + x22 + x23 − x1x2 − x2x3 − x1x3).

Consequently, we have

x31 + x32 + x33 = (x1 + x2 + x3)(x
2
1 + x22 + x23 − x1x2 − x2x3 − x1x3) + 3x1x2x3

= a1((a
2
1 − 2a2)− (a2)) + 3a3

= a31 − 3a1a2 + 3a3.

c) (x1 − x2)2(x1 − x3)2(x2 − x3)2.

Solution. Let Lxy = xx1x
y
2 + xx2x

y
3 + xx3x

y
1. Note that

(L12 − L21)
2 = (L12 + L21)

2 − 4L12L21.

Observe that

(x1x2)
3 + (x2x3)

3 + (x1x3)
3

= (x1x2 + x2x3 + x1x3)((x1x2 + x2x3 + x1x3)
2 − 3x1x2x3(x1 + x2 + x3))

+ 3(x1x2x3)
2

= a32 − 3a1a2a3 + 3a23,

L12L21 =
[
(x1x2)

3 + (x2x3)
3 + (x1x3)

2
]

+
[
(x1x2x3)(x

3
1 + x32 + x33)

]
+ 3(x1x2x3)

2

= a32 − 3a1a2a3 + 3a23 + a3(a
3
1 − 3a1a2 + 3a3) + 3a23

= a32 + a31a3 + 9a23 − 6a1a2a3,

L12 + L21 = (x1x2 + x2x3 + x1x3)(x1 + x2 + x3)− 3x1x2x3

= a1a2 − 3a3,

so that

(x1 − x2)2(x1 − x3)2(x2 − x3)2

= (L12 − L21)
2 = (L12 + L21)

2 − 4L12L21

= (a1a2 − 3a3)
2 − 4(a32 + a31a3 + 9a23 − 6a1a2a3)

= −4a31a3 + (a1a2)
2 + 18a1a2a3 − 4a32 − 27a23.

Therefore, (x1−x2)2(x1−x3)2(x2−x3)2 = −4a31a3 + (a1a2)
2 + 18a1a2a3− 4a32− 27a23.
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9. If α1, α2, α3 are the roots of the cubic polynomial x3 + 7x2 − 8x + 3, find the cubic
polynomial whose roots are
a) α2

1, α
2
2, α

2
3.

Solution. We have

α1 + α2 + α3 = −7, α1α2 + α2α3 + α1α3 = −8, α1α2α3 = −3.

Thus,

α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α2α3 + α1α3)

= 49 + 16 = 65,

α2
1α

2
2 + α2

2α
2
3 + α2

1α
2
3 = (α1α2 + α2α3 + α1α3)

2 − α1α2α3(α1 + α2 + α3)

= 64− 21 = 43,

α2
1α

2
2α

2
3 = 9

so that x3 − 65x+ 43x− 9 is the required polynomial, whose roots are α2
1, α

2
2, α

2
3.

b)
1

α1
,

1

α2
,

1

α3
.

Solution. By some computations we have

1

α1
+

1

α2
+

1

α3
=
α1α2 + α2α3 + α1α3

α1α2α3
=

8

3
,

1

α1

1

α2
+

1

α2

1

α3
+

1

α1

1

α3
=
α1 + α2 + α3

α1α2α3
=

7

3
,

1

α1

1

α2

1

α3
= −1

3

so that x3 − 8

3
x2 +

7

3
x+

1

3
is the required polynomial, whose roots are

1

α1
,

1

α2
,

1

α3
.

c) α3
1, α

3
2, α

3
3.

Solution. By some computations we have

α3
1 + α3

2 + α3
3 = (α1 + α2 + α3)

3 − 3(α1 + α2 + α3)(α1α2 + α2α3 + α1α3) + 3α1α2α3

= (−7)3 − 3(−7)(−8) + 3(−3) = −520,

α3
1α

3
2 + α3

2α
3
3 + α3

1α
3
3 = (α1α2 + α2α3 + α1α3)

3 − 3(α1 + α2 + α3)(α1α2 + α2α3 + α1α3)(α1α2α3)

+ 3(α1α2α3)
2

= (−8)3 − 3(−7)(−8)(−3) + (−3)2 = 1,

α3
1α

3
2α

3
3 = (−3)3 = −27

so that x3 + 520x2 − x+ 27 is the required polynomial, whose roots are α3
1, α

3
2, α

3
3.
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10. Prove Newtons’s identities, namely, if α1, α2, · · · , αn are the roots of f(x) = xn +
a1x

n−1 + a2x
n−2 + · · ·+ an and if sk = αk1 + αk2 + · · ·αkn then

a) sk + a1sk−1 + a2sk−2 + · · · ak−1s1 + kak = 0 if k = 1, 2, · · · , n.

Proof. First we prove the case when k = n. Using that αi are the roots of f(x),

αn1 + a1α
n−1
1 + a2α

n−2
1 + · · · an−1α1 + an = 0,

αn2 + a1α
n−1
2 + a2α

n−2
2 + · · · an−1α2 + an = 0,

...

αnn + a1α
n−1
n + a2α

n−2
n + · · · an−1αn + an = 0,

and by combining under ai, the above equations yields the identity

sn + a1sn−1 + a2sn−2 + · · · an−1s1 + nan = 0.

Now we consider when k < n. Let Sk(α1, α2, · · · , αn) = sk+a1sk−1 +a2sk−2 + · · · ak−1s1 +
kak. Since the degree of Sk(α1, α2, · · · , αn) is at most k, we can delete at least n− k roots
αi from the monomial and not change its value. This is, in fact, equivalent to that of
considering n− k roots to be zero, so that the problem is reduced to the case of handling
the polynomial f of degree k. But we have already proved that the identity holds for
the case with polynomial f with degree k and k roots. Hence, Sk(α1, α2, · · · , αn) = 0 for
k < n.

b) sk + a1sk−1 + a2sk−2 + · · · ansk−n = 0 for k > n.

Proof. At the above problem, we have essentially deleted the roots(set to zero) to obtained
the wanted results. In this case, we do in reverse. We shall now add some additional
roots. In particular, we add some k− n zeros to the polynomial f . Consequently, our new
polynomial would be of the form f(x) =

∏n
i=1(x− αi)xk−n. Denote αk+1 = · · · = αn = 0.

Then, we have

ai = (−1)i
∑

j1<···<ji

αj1αj2 · · ·αji

so that any term in which αk+1, · · · , αn = 0 appears yields 0. Now this gives the required
result of

sk + a1sk−1 + a2sk−2 + · · · ansk−n = 0.

c) For n = 5, apply part a) to determine s2, s3, s4, and s5.
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Solution. From part a) we have

s1 + a1 = 0,

s2 + a1s1 + 2a2 = 0,

s3 + a1s2 + a2s1 + 3a3 = 0,

s4 + a1s3 + a2s2 + a3s1 + 4a4 = 0,

s5 + a1s4 + a2s3 + a3s2 + a4s1 + 5a5 = 0.

Solving the above linear system of equations, we obtain

s1 = −a1,
s2 = a21 − 2a2,

s3 = −a31 + 3a1a2 − 3a3,

s4 = a41 − 4a21a2 + 2a1a2 + 4a1a3 − 4a4,

s5 = −a51 + 5a31a2 − 5a21a3 − 2a21a2 − 3a1a
2
2 + 5a1a4 + 5a2a3 − 5a5.

11. Prove that the elementary symmetric functions in x1, · · · , xn are indeed symmetric
functions in x1, · · · , xn.

Proof. Let f(t) = tn − a1tn−1 + a2t
n−2 + · · · + (−1)nan where ai denote the symmetric

functions in x1, · · · , xn . Then we have

f(t) =

n∏
i=1

(t− xi).

Consider any permutation σ ∈ Sn. We can make Sn act of F (x1, · · · , xn) naturally by
sending r(x1, x2, · · · , xn) to r(xσ(1), xσ(2), · · ·xσ(n)). Identify such mapping with σ, we
have

σ(f(t)) =
n∏
i=1

(t− xσ(i)) = f(t).

This implies that elementary symmetric functions ai remain unchanged under any permu-
tation σ ∈ Sn. Hence, they are indeed symmetric functions in x1, · · · , xn.

12. If p(x) = xn − 1 prove that the Galois group of p(x) over the field of rational numbers
is abelian.
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Proof. Let w denote the standard primitive nth root of unity. Then the set of all roots of
p(x) over some extension where it splits, is exactly (w). Note that this is a cyclic group
of order n under multiplication. Thus, we know that the splitting field of p(x) over Q is
Q(w). Let σ, τ ∈ G(Q(w),Q). Recall that such σ and τ must take a root of p(x) into a
root of p(x) in Q(w). So we assume that σ(w) = wk, τ(w) = wj for some integers k and j.
Consequently,

σ · τ(w) = σ(wj) = wkj = τ(wk) = τ · σ(w).

Hence, σ and τ commutes over Q(w). Therefore, G(Q(w),Q) is abelian.

13. a) Prove that there are φ(n) primitive nth roots of unity where φ(n) is the Euler
φ-function.

Proof. Refer the Problem 28, Section 2.4-2.5.

b) If w is a primitive nth root of unity prove that F0(w) is the splitting field of xn− 1 over
F0(and so is a normal extension of F0).

Proof. Refer the argument made in Problem 12.

c) If w1, · · · , wφ(n) are the φ(n) primitive nth roots of unity, prove that any automorphism
of F0(w) takes w1 into some wi.

Proof. Note that any automorphism of F0(w), which is a splitting field of xn − 1 over F0,
must permute roots of xn − 1. Since the order of w1 is n, and any automorphism over a
group must preserve the order of the element, w1 is mapped to another primitive nth root
of unity.

d) Prove that [F0(w) : F0] ≤ φ(n).

Proof. We continue using the same notation. Recall that any automorphism inG(F0(w), F0)
is determined by how w is mapped. Since each w is mapped to one of primitive nth roots
of unity, there can be at most φ(n) distinct automorphisms. Now by the Galois theory,
[F0(w) : F0] = o(G(F0(w), F0)) ≤ φ(n).

14. The notation is as in Problem 13.
a) Prove that there is an automorphism σi of F0(w1) which takes w1 into wi.

Proof. Let w1 = e
2πi
n . We can assign each wk as

wk = e
2kπi
n , 1 ≤ k ≤ n, (k, n) = 1.

Now define a mapping σk : F0(w1)→ F0(w1), which fixes F0 and σ(w1) = wk1 . Then σk is
indeed an autormophism, which takes w1 into wk1 = wk.
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b) Prove the polynomial pn(x) = (x−w1)(x−w2) · · · (x−wφ(n)) has rational coefficients.
(The polynomial pn(x) is called the nth cyclotomic polynomial).

Proof. Refer the Problem 8, Section 5.3.

c) Prove that, in fact, the coefficients of pn(x) are integers.

Proof. Refer the Problem 8, Section 5.3. Or it is a direct application of Gauss Lemma on
the Problem 14 b).

15. Use the results of Problems 13 and 14 to prove that pn(x) is irreducible over F0 for all
n ≥ 1.

Proof. Refer the Problem 8, Section 5.3.

16. For n = 3, 4, 6, and 8, calculate pn(x) explicitly, show that it has integer coefficients
and prove directly that it is irreducible over F0.

Proof. We have the following cases:

• Let n = 3. Then p3(x) = x2 + x + 1. Since 3 being prime, p3(x) is irreducible over
F0.

• Let n = 4. Then p4(x) = x2 + 1. Since there is not rational whose square is −1, it is
irreducible over F0.

• Let n = 6. Then p6(x) = x2 − x+ 1. By calculating discriminant, ∆ = (−1)2 − 4 =
−5 < 0. Hence p6(x) has no rational roots. So it is irreducible over F0.

• Let n = 8. Then p8(x) = x4 + 1. Substitute x + 1 to x and we have p8(x + 1) =
x4 + 4x3 + 6x2 + 4x+ 2. Applying Eisenstein’s criterion, we conclude that p8(x+ 1)
is irreducible in F0 and so does p8(x).

17. a) Prove that the Galois group of x3 − 2 over F0 is isomorphic to S3, the symmetric
group of degree 3.

Proof. Note that x3 − 2 is irreducible in F0 and hence, the Galois group of x3 − 2 over F0

has at most 6 permutations of its three roots. Let w denote the standard primitive 3rd
root of unity. We know that 2

1
3 , w2

1
3 , w22

1
3 are the roots of x3 − 2 and hence, F0(2

1
3 , w) is

the splitting field of x3 − 2 over F0, of degree 6. Since o(G(F0(2
1
3 , w), F0)) = [F0(2

1
3 , w) :

F0] = 6, we must have all the 6 permutations of three roots of x3 − 2 as the elements of

Galois group. Hence, G(F0(2
1
3 , w), F0) ' S3.

b) Find the splitting field, K, of x3 − 2 over F0.
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Proof. Refer the above Problem 17 a).

c) For every subgroup H of S3 find KH and check the correspondence given in Theorem
5.6.6.

Proof. Let σi ∈ G(K,F0). Then we can identify each σi with those in S3 = (σ, τ), σ3 =
id, τ2 = id by

σ1 : 2
1
3 7→ 2

1
3 , w 7→ w ⇐⇒ id,

σ2 : 2
1
3 7→ 2

1
3 , w 7→ w2 ⇐⇒ τ,

σ3 : 2
1
3 7→ w2

1
3 , w 7→ w ⇐⇒ σ,

σ4 : 2
1
3 7→ w2

1
3 , w 7→ w2 ⇐⇒ στ,

σ5 : 2
1
3 7→ w22

1
3 , w 7→ w ⇐⇒ σ2,

σ6 : 2
1
3 7→ w22

1
3 , w 7→ w2 ⇐⇒ σ2τ.

Let H = A3 ' {σ1, σ3, σ5}. It is clear that H ' G(K,F0(w)). By identifying those two,
we have

KH = F0(w)

so that F0(w) = KG(K,F0(w)). Moreover, we know that [K : F0(w)] = 3 and also,
o(G(K,F0(w))) = 3. Now consider a polynomial x3 − 1. Then F0(w) is a normal ex-
tension of F0. But it is also true that G(K,F0(w)) ' A3, is also a normal subgroup of
G(K,F0) ' S3. So we have investigated the correspondence of A3 and F0(w). Similarly,

we can also find the correspondence between {id, τ} and F0(w
22

1
3 ), {id, στ} and F0(2

1
3 )

also {id, σ2τ} and F0(w2
1
3 ). That S3 and F0 are corresponding is trivial. Thus, we are

done.

c) Find a normal extension in K of degree 2 over F0.

Proof. Note that G(K,F0(w)) ' A3 is a normal subgroup of G(K,F0) ' S3. Hence, the

corresponding field extension F0(w) is a normal extension in K, of degree
G(K,F0)

G(K,F0(w))
= 2

over F0.

18. If the field F contains a primitive nth root of unity, prove that the Galois group of
xn − a, for a ∈ F , is abelian.
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Proof. Let w denote a primitive nth root of unity in F . We know that

a
1
n , wa

1
n , w2a

1
n , · · · , wn−1a

1
n

are the roots of xn − a. Since w generates all the other powers of w, that is, it generates
all the nth roots of unity in F . Thus, any automorphisms in the Galois group of xn − a
over F , which result in the permutations of roots of xn − a, must be commutative in their
operations. Detailed explanation can be found in the text. Refer Lemma 5.7.3 b) .
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