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Problems in Section 5.5.

1. If F is of characteristic 0 and f(x) ∈ F [x] in such that f ′(x) = 0, prove that f(x) =
α ∈ F .

Proof. Note that in the field F of characteristic 0, for any a ∈ F , na = 0 if and only if n = 0
or a = 0. Suppose we have f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ F [x]. If f ′(x) = 0,

we have kak = 0 for all k = 1, 2, · · · , n. This forces that ak = 0 for all k = 1, 2, · · · , n and
hence, f(x) = a0 for some a0 ∈ F .

2. If F is of characteristic p 6= 0 and if f(x) ∈ F [x] is such that f ′(x) = 0, prove that
f(x) = g(xp) for some polynomial g(x) ∈ F [x].

Proof. Note that in the field F of characteristic 0, for any a ∈ F , na = 0 if and only
if p | n or a = 0. Suppose we have f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 ∈ F [x].

If f ′(x) = 0, we have kak = 0 for all k = 1, 2, · · · , n which implies that coefficients
of xt, where t is not a divisor of prime, vanish. Ultimately, we have f(x) of the form
f(x) = apkmx

pkm + apkm−1x
pkm−1 + · · ·+ apx

p + a0.

3. Prove that (f(x)+g(x))′ = f ′(x)+g′(x) and that (αf(x))′ = αf ′(x) for f(x), g(x) ∈ F [x]
and α ∈ F .

Proof. Let f(x) =
∑n

i aix
i, g(x) =

∑m
i bix

i ∈ F [x]. Let ci = ai + bi. Denote f(x) + g(x)
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by
∑t

i cix
i. Consequently, we have

(f(x) + g(x))′ =

(
t∑

i=0

cix
i

)′
=

t−1∑
i=0

icix
i−1

=
t−1∑
i=0

i(ai + bi)x
i−1

=
t−1∑
i=0

iaix
i−1 +

t−1∑
i=0

ibix
i−1

= f ′(x) + g′(x).

Moreover,

(αf(x))′ =

(
α

n∑
i=0

aix
i

)′
=

(
n∑

i=0

αaix
i

)′

=

n−1∑
i=0

αiaix
i−1 = α

n−1∑
i=0

iaix
i−1

= αf ′(x).

4. Prove that there is no rational function in F (x) such that its square is x.

Proof. Let r(x) =
f(x)

g(x)
denote a rational function in F (x) where f(x) and g(x) are in

F [x]. Suppose r(x)2 = x. Then f(x)2 = xg(x)2. Note that the degree of f(x) and g(x)
must be same. Let deg f(x) = k. But we have that

deg f(x)2 = k2 = deg(xg(x)2) = deg x+ deg g(x)2 = 1 + k2,

which is a contradiction. Thus, there is no rational function in F (x) such that its square
is x.

5. Complete the induction needed to establish the corollary to Theorem 5.5.1.

Proof. We have to show that, if a1, a2, · · · , an are algebraic over F , then there is c ∈
F (a1, a2, · · · , an) such that F (c) = F (a1, a2, · · · , an). If n = 1, it is trivial. So we assume
that the statement is true for all k < n. Consider an extension field F (a1, a2, · · · , an).
Then there is a c′ ∈ F (a1, a2, · · · , an−1) such that F (c′) = F (a1, a2, · · · , an−1). Hence,
F (a1, a2, · · · , an) = (F (c′), an) = F (c′, an). Applying the induction hypothesis again, we
can find c ∈ F (c′, an) such that F (c) = F (c′, an) = F (a1, a2, · · · , an).
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6. Show that any field of characteristic 0 is perfect.

Proof. Let E be a finite extension of field F (of characteristic 0) with degree n. Choose
α ∈ E. Consider the set {1, α, α2, · · · , αn} in E. As [E : F ] = n, the above set is linearly
dependent over F and hence α admits a minimal polynomial p(x) such that p(α) = 0. But
since every irreducible polynomial in the field of characteristic 0 has no multiple roots, it
is separable. As α and E were arbitrary, F is perfect.

7. a) If F is of characteristic p 6= 0 show that for a, b ∈ F , (a+ b)p
m

= ap
m

+ bp
m

.

Proof. Observe the following:

(a+ b)p
m

=

pm∑
k=0

(
pm

k

)
ap

m−kbk

= ap
m

+

(
pm

1

)
ap

m−1b+

(
pm

2

)
ap

m−2b2 + · · ·+
(

pm

pm − 1

)
abp

m−1 + bp
m

= ap
m

+ bp
m

(∵ p |
(
pm

k

)
, k ∈ Z+).

b) If F is of characteristic p 6= 0 and if K is an extension of F let T = {a ∈ K : ap
n ∈

F for some n}. Prove that T is a subfield of K.

Proof. Suppose a, b ∈ T . Let n,m be the integers such that ap
n
, bp

m ∈ F . Consequently,

(a+ b)p
n+m

= ap
n+m

+ bp
n+m

= (ap
n
)p

m
+ (bp

m
)p

n ∈ F.

Also,

(ab)p
n+m

= (ap
n
)p

m · (bpm)p
n ∈ F.

Moreover,

1 = 1p
n

=

(
a · 1

a

)pn

= ap
n

(
1

a

)pn

=⇒
(

1

a

)pn

∈ F.

Therefore, T forms a subfield of K.

8. If K,T, F are as in Problem 7b) show that any automorphism of K leaving every element
of F fixed also leaves every element of T fixed.

Proof. Let σ ∈ A(K) which fixes F . Choose t ∈ T . Then there is an integer n such
that tp

n ∈ F . Consequently, σ(t)p
n

= σ(tp
n
) = tp

n
. Recall that charF = p so that

(σ(t)− t)p
n

= 0. So the only possibility is that σ(t) = t. Hence, σ also fixes T .
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9. Show that a field F of characteristic p 6= 0 is perfect if and only if for every a ∈ F we
can find a b ∈ F such that bp = a.

Proof. Given statement is equivalent to that of: Every irreducible polynomial in F [x] is
separable if and only if F p = F . We prove its contrapositive, that is there is an irreducible
inseparable polynomial in F [x] if and only if F p 6= F .
Suppose F p 6= F . Choose a ∈ F − F p. Consider the polynomial p(x) = xp − a ∈ F [x].
Suppose β is a root of p(x) in the splitting field of p(x) over F . Then

xp − a = xp − βp = (x− β)p

so that β is the only root of p(x). We now claim that p(x) is the polynomial we seek; an
irreducible inseparable polynomial in F [x]. Note that any proper monic divising factor of
p(x)(in the polynomial ring of the splitting field) is of the form (x− β)m. Suppose it has
to be a polynomial in F [x], as the coefficient of xm−1 is −mβ, mβ ∈ F . Hence, β ∈ F .
But this implies βp = a, contradicting that a ∈ F − F p. Therefore, p(x) is an irreducible
insparable polynomial in F [x].
Conversely, assume that there is an irreducible inseparable polynomial p(x) in F [x]. Then
p(x) = g(xp) for some g(x) ∈ F [x]. If F p = F , for each a ∈ F , there is b ∈ F such that
bp = a. Writing p(x) = g(xp) = apkmx

pkm + apkm−1x
pkm−1 + · · ·+ apx

p + a0, we have

p(x) = (bmx
km)p + (bm−1x

km−1)p + · · ·+ (b1x)p + bp0, (bpm = apkm)

= (bmx
km + bm−1x

k−m−1 + · · ·+ b1x+ b0)
p

so that p(x) is reducible. But this contradicts the irreducibility of p(x). Hence, F p 6= F .

10. Using the result of Problem 9, prove that any finite field is perfect.

Proof. Consider the Frobenius mapping σ : F → F sending x 7→ xp. It is clearly an
injective homomorphism. Since F is given finite, σ is also surjective. Therefore, F p = F ,
and hence, by Problem 9 the given finite field F is perfect.

11. If K is an extension of F prove that the set of elements in K which are separable over
F forms a subfield of K.

Proof. I could not yet find a proof that does not make use of notion of separable degree. I
shall give a note on separable degree or find a proof that can be considered more elementary;
a proof does not involve any other than introduced in the text of Herstein’s.

12. If F is of characteristic p 6= 0 and if K is a finite extension of F , prove that given
a ∈ K either ap

n ∈ F for some n or we can find an integer m such that ap
m 6∈ F and is

separable over F .
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Proof. If α ∈ K is separable over F , then there is nothing to prove. So we assume that α
is inseparable over F . That is, for any irreducible polynomial f(x) ∈ F [x] that α satisfies,
f(x) = g(xp) for some g(x) ∈ F [x]. Choose the maximal integer m such that f(x) = h(xp

m
)

for some h(x) ∈ F [x]. Now the obtained h(x) is a polynomial that is both irreducible and
not a polynomial of the form of t(xp), t(x) ∈ F [x], by the definition of m. Hence, h(x) is
separable over F . If αpm ∈ F , we are done. If not, then αpm is a root of h(x), which does
not lie in F and separable over F .

13. If K and F are as in Problem 12, and if no elements which is in K but not in F is
separable over F , prove that given a ∈ K we can find an integer n, depending on a, such
that ap

n ∈ F .

Proof. If α ∈ F , we are done. If α ∈ K − F , α must satisfy either ap
n ∈ F for some n or

ap
m 6∈ F and ap

m
is separable over F . But clearly, later is not the case as no elements in

K − F is separable. Hence, ap
n ∈ F for some n(depending on a).

14. If K is a finite, separable extension of F prove that K is a simple extension of F .

Proof. If F has characteristic 0, then it is just the same as Theorem 5.5.1. So we handle
the case of F having characteristic p 6= 0. We have two cases: i) F is a finite field and ii)
F is infinite.
If F is a finite field, so does K and hence, K×, is a cyclic group under multiplica-
tion(Problem 9, Section 5.1). Hence, it admits generator α(in K) and hence, K = F (α).
If F is infinite, we just follow the method used for the proof of Theorem 5.5.1. First
consider the finite extension F (α, β) of F to be separable. Let f(x) and g(x) be the ir-
reducible polynomials of degree m and n, satisfied by α and β respectively. As α and β
were separable, f(x) and g(x) could chosen to be separable over F . That is, every roots
of f(x) are distinct and so does g(x). Let the roots of f(x) be a = a1, a2, · · · , am and the
roots of g(x) be b = b1, b2, · · · , bn. Since F is infinite, we could have chose γ ∈ F such that
ai + γbj 6= a+ γb for all i and j. Put c = a+ γb. Then F (c) ⊂ F (a, b).
Now, as b satisfies g(x) ∈ F [x], g(x) can be considered as a polynomial over F (c). More-
over, if h(x) = f(c − γx) then h(x) ∈ F (c) and h(b) = f(c − γb) = f(a) = 0, so that
(x − b) | g(x), h(x) in some extension of F (c). Suppose bj was another root of g(x), then
h(bj) = f(c − γbj) 6= 0 unless bj = b. Also, as g(x) is separable, it has no multiple root.
Hence, x− b is the greatest common divisor of h(x) and g(x) over some extension of F (c).
Note that deg x − b = 1. Hence, the nontrivial greatest common divisor of h(x) and g(x)
in F (c)[x], which must be a divisor of x − b, is exactly x − b itself. Hence, b ∈ F (c). As
a = c− γb ∈ F (c), a, b ∈ F (c) and hence, F (a, b) ⊂ F (c). Therefore, combining the result,
we have F (a, b) = F (c) given that F (a, b) is separable(or equivalently, a, b are separable)
over F .
So now by induction, we have that finite separable extension K of F is a simple extension
of F .
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15. If one of a or b is separable over F , prove that F (a, b) is a simple extension of F .

Proof. Scrutinising the proof of Problem 14 or Theorem 5.5.1, we can see that choosing
of value γ ∈ F for the primitive c, depends on the choosing of roots of f(x) and g(x). In
general, although f(x) is not be separable, we still can choose c so that c = a+γb 6= ai+γbj
for all i and j. The place where the separability of b used is to show the existence of monic
greatest common divisor of h(x) and g(x). Thus, separability of only either one of a or b
is sufficient to prove that F (a, b) is a simple extension of F .
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