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Problems in Section 5.4.

1. Prove that if α, β are constructible, then so are α± β, αβ, α/β (when β 6= 0) .

Proof. Suppose given that α and β are constructible. Without lossing of generality, we
shall assume that α, β > 0 and α > β(if necessary). We begin by drawing a circle C1 on
the Euclidean plane with centre O with radius α. Again, draw a circle C2 of radius β with
any point B on C1 as its centre. Then the straight line which joins O and B intersects C2

at two points. Denote the nearest intersection point as P1 and the other one as P2. Then
the line segment OP1 has the length α−β while the line segment OP2 has the length α+β.
Hence, α± β is contructible.

Fig.1

Now we claim that αβ is construcitible. WLOG, we assume that β > 1. As in Fig.1, draw
a line joining A and D and mark B on the that line so that AB is a line segment with
length α. Now assume that there is a straight line joining A and C and mark E on the
same line so that AE has length 1. Let F be the line segment of length β. Suppose AD
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has length x. From the congruence property of triangle 4AEB and 4AFD, we have that

|AE|
|AB|

=
|AF |
|AD|

=
1

α
=
β

x
=⇒ x = αβ.

Hence αβ is constructible. With similar setting above, assuming
∣∣AB∣∣ = β,

∣∣AF ∣∣ =

α(further assumption that α > 1) and
∣∣AD∣∣ = x, we have x =

α

β
. Thus,

α

β
is also

constructible.

2. Prove that a line in F has an equation of the form ax+ by + c = 0 with a, b, c in F .

Proof. Let A(p, q) and B(r, s) be the points in the plane of F . Let l denote the straight line
passing through A and B. Then by the formula of line joining two points in the Euclidean
plane, assuming r 6= p,

l :
y − q
s− q

=
x− p
r − p

⇐⇒ y =
s− q
r − p

x+

(
q − p · s− q

r − p

)
.

If r = p, it is just the line x = p. Hence in either cases, the line is of the form ax+by+c = 0,
where a, b, c ∈ F .

3. Prove that a circle in F has an equation of the form

x2 + y2 + ax+ by + c = 0,

with a, b, c ∈ F .

Proof. Let O(a, b) and r ∈ F denote the centre and radius of a circle in the plane of F
respectively. Then, it has the equation of the form

(x− a)2 + (y − b)2 = r2 ⇐⇒ x2 + y2 − 2ax− 2by + (a2 + b2 − r2) = 0

so that it is the form of x2 + y2 + ax+ by + c = 0, with a, b, c ∈ F .

4. Prove that two lines in F , which intersect in the real plane, intersect at a point in the
plane of F .

Proof. Let l1 : ax+ by + c = 0, l2 : px+ qy + r = 0 denote two lines in F . Suppose these
two lines intersects. If aq = bp, this implies that l1 and l2 have same slopes and therefore,
l1 = l2. If aq 6= bp, then the following linear system(

a b
p q

)(
x
y

)
=

(
−c
−d

)
⇐⇒

(
x
y

)
=

1

aq − bp

(
q −b
−p a

)(
−c
−d

)
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leaves out with the unique solution such that(i.e., there is only one intersection)

x0 =
bd− cq
aq − bp

, y0 =
cp− ad
aq − bp

.

It is clear that both x0 and y0 are in F . Hence, l1 and l2 has an intersection in F provided
that l1 and l2 intersects in the real plane.

5. Prove that a line in F and a circle in F which intersect in the real plane do so at a point
either in the plane of F or in the plane of F (

√
γ) where γ is a positive number in F .

Proof. Let x2 + y2 + ax + by + c = 0 and px + qy + r = 0 denote the equation of a circle
and a line in the plane of F . Then equating the two equations gives a quadratic equation
of x(or in y). Provided that the circle and line intersect in the real plane, the quadratic
equation must yield solutions of the form α ± β√γ for some α, β, γ(> 0) ∈ F . Assuming
one of the points of intersection is (x0, y0), we either have that x0, y0 ∈ F if γ is a square,
or x0, y0 ∈ F (

√
γ) otherwise.

6. If γ ∈ F is positive, prove that
√
γ is realisable as an intersection of lines and circles in

F .

Proof.

Fig.2

Observe Fig 2. We can construct a line segment AB with length 1+γ where
∣∣AC∣∣ = 1 and∣∣CB∣∣ = γ. Further, draw a half circle having

∣∣AB∣∣ as its diameter. Draw a perpendicular
line on C so that it intersects with D(Note that D is obtained as an intersection of a circle
and a line in F ). Now by the congruence of the triangle 4ADC and 4DBC, we have that∣∣CD∣∣ =

√
γ.

7. Prove that the following polynomials are irreducible over the field of rational numbers.
a) 8x3 − 6x− 1.
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Proof. Substitute x− 1 instead of x. Then we have

8(x− 1)3 − 6(x− 1)− 1 = 8x3 − 24x2 + 18x− 3.

Now apply Eisenstein’s criterion for p = 3. Thus we conclude that given polynomial is
irreducible in Q.

b) x3 − 2.

Proof. Apply Eisenstein’s criterion for p = 2.

c) x3 + x2 − 2x− 1.

Proof. Substitute x+ 2 instead of x. Then we have

(x+ 2)3 + (x+ 2)2 − 2(x+ 2)− 1 = x3 + 7x2 + 14x+ 7.

Now apply Eisenstein’s criterion for p = 7. Thus we conclude that given polynomial is
irreducible in Q.

8. Prove that 2 cos(2π/7) satisfies x3 + x2 − 2x− 1.

Proof. Using that 2 cos(2π/7) = e
2iπ
7 + e−

2iπ
7 ,

(2 cos(2π/7))3+(2 cos(2π/7))2 − 2(2 cos(2π/7))− 1

= (e
2iπ
7 + e−

2iπ
7 )3 + (e

2iπ
7 + e−

2iπ
7 )2 − 2(e

2iπ
7 + e−

2iπ
7 )− 1

= (e
6iπ
7 + 3e

2iπ
7 − 3e−

2iπ
7 + e−

6iπ
7 ) + (e

4iπ
7 + 2 + e−

4iπ
7 )

− 2(e
2iπ
7 + e−

2iπ
7 )− 1

= 2 cos
6π

7
+ 2 cos

4π

7
+ 2 cos

2π

7
+ 1

where

2 cos
6π

7
+2 cos

4π

7
+ 2 cos

2π

7
+ 1 =

sin π
7

sin π
7

(
2 cos

6π

7
+ 2 cos

4π

7
+ 2 cos

2π

7

)
+ 1

=
1

sin π
7

[(
sinπ − sin

5π

7

)
+

(
sin

5π

7
− sin

3π

7

)
+

(
sin

3π

7
− sin

π

7

)]
+ 1

= −1 + 1 = 0.

Therefore, 2 cos
2π

7
satisfies x3 + x2 − 2x− 1.

9. Prove that the regular pentagon is constructible.
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Proof. It is sufficient to show that ζ = e
2πi
5 is a constructible number. We know that ζ is

the standard 5th root of unity, so that ζ5 = 1 =⇒ ζ4 + ζ3 + ζ2 + ζ + 1 = 0. Now from the
fact that the polynomial x4 + x3 + x2 + x+ 1 is irreducible in Q, [Q(ζ) : Q] = 4. Now we
see that ζ lies in the extension field of degree 4 = 22, and hence, ζ is constructible.

10. Prove that the regular hexagon is constructible.

Proof. It is sufficient to show that ζ = e
πi
3 is a constructible number. It is clear that ζ =

1

2
,

and hence, ζ ∈ Q. It follows that ζ is constructible.

11. Prove that the regular 15-gon is constructible.

Proof. We know that e
2πi
5 and e

πi
3 are constructible numbers. Moreover,

e
2πi
15 =

(
e

2πi
5

e
πi
3

)2

so that e
2πi
15 is also constructible. Therefore, 15-gon is constructible.

12. Prove that it is possible to trisect 72◦.

Proof. It is sufficient to show that e
2πi
5

· 1
3 = e

2πi
15 is constructible. But we have proved this

fact already in Problem 11.

13. Prove that a regular 9-gon is not constructible.

Proof. Let ζ = e
2πi
9 . From ζ9 = 1, we know that

ζ6 + ζ3 + 1 = 0

and moreover, f(x) = x6 + x3 + 1 is irreducible in Q. Thus, [Q(ζ) : Q] = 6. But 6 is not a
power of 2. Therefore, regular 9-gon is not constructible.

14. Prove a regular 17-gon is constructible.

Proof. It is sufficient to show that ζ = e
2πi
17 is a constructible number. It follows that

ζ17 = 1 =⇒ ζ16 + ζ15 + · · · + ζ2 + ζ + 1 = 0. From the fact that the polynomial
x16 + x15 + · · ·+ x2 + x+ 1 is irreducible in Q, [Q(ζ) : Q] = 16. Now we see that ζ lies in
the extension field of degree 16 = 24, and hence, ζ is constructible.
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