Topics in Algebra solution

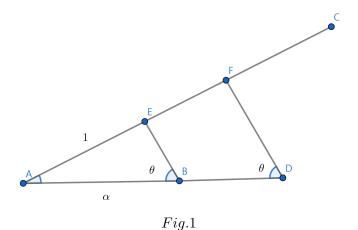
Sung Jong Lee, lovekrand.github.io

December 5, 2020

Problems in Section 5.4.

1. Prove that if α, β are constructible, then so are $\alpha \pm \beta$, $\alpha\beta$, α/β (when $\beta \neq 0$).

Proof. Suppose given that α and β are constructible. Without lossing of generality, we shall assume that $\alpha, \beta > 0$ and $\alpha > \beta$ (if necessary). We begin by drawing a circle C_1 on the Euclidean plane with centre O with radius α . Again, draw a circle C_2 of radius β with any point B on C_1 as its centre. Then the straight line which joins O and B intersects C_2 at two points. Denote the nearest intersection point as P_1 and the other one as P_2 . Then the line segment $\overline{OP_1}$ has the length $\alpha - \beta$ while the line segment $\overline{OP_2}$ has the length $\alpha + \beta$. Hence, $\alpha \pm \beta$ is contructible.



Now we claim that $\alpha\beta$ is constructible. WLOG, we assume that $\beta > 1$. As in Fig.1, draw a line joining A and D and mark B on the that line so that \overline{AB} is a line segment with length α . Now assume that there is a straight line joining A and C and mark E on the same line so that \overline{AE} has length 1. Let \overline{F} be the line segment of length β . Suppose \overline{AD}

has length x. From the congruence property of triangle $\triangle AEB$ and $\triangle AFD$, we have that

$$\frac{|\overline{AE}|}{|\overline{AB}|} = \frac{|\overline{AF}|}{|\overline{AD}|} = \frac{1}{\alpha} = \frac{\beta}{x} \implies x = \alpha\beta.$$

Hence $\alpha\beta$ is constructible. With similar setting above, assuming $\left|\overline{AB}\right|=\beta$, $\left|\overline{AF}\right|=\alpha$ (further assumption that $\alpha>1$) and $\left|\overline{AD}\right|=x$, we have $x=\frac{\alpha}{\beta}$. Thus, $\frac{\alpha}{\beta}$ is also constructible.

2. Prove that a line in F has an equation of the form ax + by + c = 0 with a, b, c in F.

Proof. Let A(p,q) and B(r,s) be the points in the plane of F. Let l denote the straight line passing through A and B. Then by the formula of line joining two points in the Euclidean plane, assuming $r \neq p$,

$$l: \frac{y-q}{s-q} = \frac{x-p}{r-p} \iff y = \frac{s-q}{r-p}x + \left(q-p \cdot \frac{s-q}{r-p}\right).$$

If r = p, it is just the line x = p. Hence in either cases, the line is of the form ax + by + c = 0, where $a, b, c \in F$.

3. Prove that a circle in F has an equation of the form

$$x^2 + y^2 + ax + by + c = 0,$$

with $a, b, c \in F$.

Proof. Let O(a,b) and $r \in F$ denote the centre and radius of a circle in the plane of F respectively. Then, it has the equation of the form

$$(x-a)^2 + (y-b)^2 = r^2 \iff x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0$$

so that it is the form of $x^2 + y^2 + ax + by + c = 0$, with $a, b, c \in F$.

4. Prove that two lines in F, which intersect in the real plane, intersect at a point in the plane of F.

Proof. Let $l_1: ax + by + c = 0$, $l_2: px + qy + r = 0$ denote two lines in F. Suppose these two lines intersects. If aq = bp, this implies that l_1 and l_2 have same slopes and therefore, $l_1 = l_2$. If $aq \neq bp$, then the following linear system

$$\begin{pmatrix} a & b \\ p & q \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -c \\ -d \end{pmatrix} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{aq - bp} \begin{pmatrix} q & -b \\ -p & a \end{pmatrix} \begin{pmatrix} -c \\ -d \end{pmatrix}$$

leaves out with the unique solution such that (i.e., there is only one intersection)

$$x_0 = \frac{bd - cq}{aq - bp}, \quad y_0 = \frac{cp - ad}{aq - bp}.$$

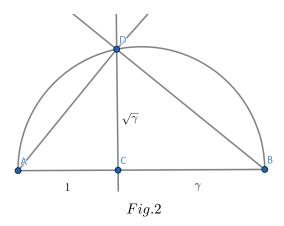
It is clear that both x_0 and y_0 are in F. Hence, l_1 and l_2 has an intersection in F provided that l_1 and l_2 intersects in the real plane.

5. Prove that a line in F and a circle in F which intersect in the real plane do so at a point either in the plane of F or in the plane of $F(\sqrt{\gamma})$ where γ is a positive number in F.

Proof. Let $x^2 + y^2 + ax + by + c = 0$ and px + qy + r = 0 denote the equation of a circle and a line in the plane of F. Then equating the two equations gives a quadratic equation of x(or in y). Provided that the circle and line intersect in the real plane, the quadratic equation must yield solutions of the form $\alpha \pm \beta \sqrt{\gamma}$ for some $\alpha, \beta, \gamma(>0) \in F$. Assuming one of the points of intersection is (x_0, y_0) , we either have that $x_0, y_0 \in F$ if γ is a square, or $x_0, y_0 \in F(\sqrt{\gamma})$ otherwise.

6. If $\gamma \in F$ is positive, prove that $\sqrt{\gamma}$ is realisable as an intersection of lines and circles in F.

Proof.



Observe Fig 2. We can construct a line segment \overline{AB} with length $1+\gamma$ where $|\overline{AC}|=1$ and $|\overline{CB}|=\gamma$. Further, draw a half circle having $|\overline{AB}|$ as its diameter. Draw a perpendicular line on C so that it intersects with $D(\text{Note that }D\text{ is obtained as an intersection of a circle and a line in }F). Now by the congruence of the triangle <math>\triangle ADC$ and $\triangle DBC$, we have that $|\overline{CD}|=\sqrt{\gamma}$.

7. Prove that the following polynomials are irreducible over the field of rational numbers. a) $8x^3 - 6x - 1$.

Proof. Substitute x-1 instead of x. Then we have

$$8(x-1)^3 - 6(x-1) - 1 = 8x^3 - 24x^2 + 18x - 3.$$

Now apply Eisenstein's criterion for p=3. Thus we conclude that given polynomial is irreducible in \mathbb{Q} .

b)
$$x^3 - 2$$
.

Proof. Apply Eisenstein's criterion for p = 2.

c)
$$x^3 + x^2 - 2x - 1$$
.

Proof. Substitute x + 2 instead of x. Then we have

$$(x+2)^3 + (x+2)^2 - 2(x+2) - 1 = x^3 + 7x^2 + 14x + 7.$$

Now apply Eisenstein's criterion for p=7. Thus we conclude that given polynomial is irreducible in \mathbb{Q} .

8. Prove that $2\cos(2\pi/7)$ satisfies $x^3 + x^2 - 2x - 1$.

Proof. Using that $2\cos(2\pi/7) = e^{\frac{2i\pi}{7}} + e^{-\frac{2i\pi}{7}}$.

$$(2\cos(2\pi/7))^{3} + (2\cos(2\pi/7))^{2} - 2(2\cos(2\pi/7)) - 1$$

$$= (e^{\frac{2i\pi}{7}} + e^{-\frac{2i\pi}{7}})^{3} + (e^{\frac{2i\pi}{7}} + e^{-\frac{2i\pi}{7}})^{2} - 2(e^{\frac{2i\pi}{7}} + e^{-\frac{2i\pi}{7}}) - 1$$

$$= (e^{\frac{6i\pi}{7}} + 3e^{\frac{2i\pi}{7}} - 3e^{-\frac{2i\pi}{7}} + e^{-\frac{6i\pi}{7}}) + (e^{\frac{4i\pi}{7}} + 2 + e^{-\frac{4i\pi}{7}})$$

$$- 2(e^{\frac{2i\pi}{7}} + e^{-\frac{2i\pi}{7}}) - 1$$

$$= 2\cos\frac{6\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{2\pi}{7} + 1$$

where

$$2\cos\frac{6\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{2\pi}{7} + 1 = \frac{\sin\frac{\pi}{7}}{\sin\frac{\pi}{7}} \left(2\cos\frac{6\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{2\pi}{7} \right) + 1$$
$$= \frac{1}{\sin\frac{\pi}{7}} \left[\left(\sin\pi - \sin\frac{5\pi}{7} \right) + \left(\sin\frac{5\pi}{7} - \sin\frac{3\pi}{7} \right) + \left(\sin\frac{3\pi}{7} - \sin\frac{\pi}{7} \right) \right] + 1$$
$$= -1 + 1 = 0.$$

Therefore, $2\cos\frac{2\pi}{7}$ satisfies $x^3 + x^2 - 2x - 1$.

9. Prove that the regular pentagon is constructible.

Proof. It is sufficient to show that $\zeta = e^{\frac{2\pi i}{5}}$ is a constructible number. We know that ζ is the standard 5th root of unity, so that $\zeta^5 = 1 \implies \zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$. Now from the fact that the polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible in \mathbb{Q} , $[\mathbb{Q}(\zeta):\mathbb{Q}] = 4$. Now we see that ζ lies in the extension field of degree $4 = 2^2$, and hence, ζ is constructible.

10. Prove that the regular hexagon is constructible.

Proof. It is sufficient to show that $\zeta = e^{\frac{\pi i}{3}}$ is a constructible number. It is clear that $\zeta = \frac{1}{2}$, and hence, $\zeta \in \mathbb{Q}$. It follows that ζ is constructible.

11. Prove that the regular 15-gon is constructible.

Proof. We know that $e^{\frac{2\pi i}{5}}$ and $e^{\frac{\pi i}{3}}$ are constructible numbers. Moreover,

$$e^{\frac{2\pi i}{15}} = \left(\frac{e^{\frac{2\pi i}{5}}}{e^{\frac{\pi i}{3}}}\right)^2$$

so that $e^{\frac{2\pi i}{15}}$ is also constructible. Therefore, 15-gon is constructible.

12. Prove that it is possible to trisect 72° .

Proof. It is sufficient to show that $e^{\frac{2\pi i}{5} \cdot \frac{1}{3}} = e^{\frac{2\pi i}{15}}$ is constructible. But we have proved this fact already in Problem 11.

13. Prove that a regular 9-gon is not constructible.

Proof. Let $\zeta = e^{\frac{2\pi i}{9}}$. From $\zeta^9 = 1$, we know that

$$\zeta^6 + \zeta^3 + 1 = 0$$

and moreover, $f(x) = x^6 + x^3 + 1$ is irreducible in \mathbb{Q} . Thus, $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 6$. But 6 is not a power of 2. Therefore, regular 9-gon is not constructible.

14. Prove a regular 17-gon is constructible.

Proof. It is sufficient to show that $\zeta = e^{\frac{2\pi i}{17}}$ is a constructible number. It follows that $\zeta^{17} = 1 \implies \zeta^{16} + \zeta^{15} + \dots + \zeta^2 + \zeta + 1 = 0$. From the fact that the polynomial $x^{16} + x^{15} + \dots + x^2 + x + 1$ is irreducible in \mathbb{Q} , $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 16$. Now we see that ζ lies in the extension field of degree $16 = 2^4$, and hence, ζ is constructible.