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Problems in Section 5.3.

1. In the proof of Lemma 5.3.1, prove that the degree of q(x) is one less than that of p(x).

Proof. Assuming p(x) as a polynomial in K[x]. Then from p(x) = (x−b)q(x)+p(b) implies
that

deg(p(x)) = deg((x− b)q(x) + p(b)) = deg((x− b)q(x)) = deg(x− b) + deg(q(x))

in K[x]. But since deg(x− b) = 1, deg(q(x)) is exactly one less than deg(p(x)).

2. In the proof of Theorem 5.3.1, prove in all detail that the elements 1+V, x+V, · · · , xn−1+
V form a basis of E over F .

Proof. Refer the Problem 2, Section 5.1.

3. Prove Lemma 5.3.3 in all detail.

Proof. We prove that the mapping τ∗ : F [x]→ F ′[t] defined by

f(x)τ∗ = (a0 + a1x+ · · · anxn)τ∗ = (a0τ) + (a1τ)t+ · · · (anτ)tn

where τ : F → F ′ is an onto isomorphism. Choose f(x), g(x) ∈ F [x] where

f(x) = a0 + a1x+ · · · anxn,
g(x) = b0 + b1x+ · · · bmxm.

Observe that

(f(x) + g(x))τ∗ =

(
k∑

i=0

cix
i

)
τ∗ =

k∑
i=0

(ciτ)ti

=
k∑

i=0

(ai + bi)τt
i =

k∑
i=0

(aiτ + biτ)ti

=
k∑

i=0

(aiτ)ti +
k∑

i=0

(biτ)ti = f(x)τ∗ + g(x)τ∗
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and by denoting di =
∑i

j=0 ajbi−j , f(x)g(x) =
∑l

i=0 dix
i,

(f(x)g(x))τ∗ =

(
l∑

i=0

dix
i

)
τ∗ =

l∑
i=0

(diτ)ti

=

l∑
i=0

 i∑
j=0

ajbi−j

 τti

=
l∑

i=0

 i∑
j=0

(ajτ)(bi−jτ)

 ti = f(x)τ∗ · g(x)τ∗.

Thus, τ∗ is a homomorphism. Recall the fact that two polynomials are equal if and only
if their coefficients are componentwise equal. Now since τ is an onto isomorphism, the
bijectivity of τ∗ follows. Therefore, τ∗ is an isomorphism of F [x] onto F ′[t].

4. Show that τ∗∗ in Lemma 5.3.4 is well defined and is an isomorphism of F [x]/(f(x)) onto
F ′[t]/(f ′(t)).

Proof. We prove that the mapping τ∗∗ : F [x]/(f(x))→ F ′[t]/(f ′(t)) defined by

(g(x) + (f(x))τ∗∗ = g′(t) + (f ′(t))

is a well defined onto isomorphism. Choose g(x), h(x) such that g(x) + (f(x)) = h(x) +
(f(x)). That is, g(x) − h(x) = p(x)f(x) for some p(x) ∈ F [x]. Then if follows that
g′(t)− h′(t) = p′(t)f ′(t) so that g′(t) + (f ′(t)) = h′(t) + (f ′(t)). Hence, τ∗∗ is well defined.
Now we show that τ∗∗ is a homomorphism. Observe that

((g(x) + (f(x))) + (h(x) + (f(x)))) τ∗∗ = (g(x) + h(x) + (f(x)))τ∗∗

= g′(t) + h′(t) + (f ′(t))

= (g′(t) + (f ′(t))) + (h′(t) + (f ′(t)))

= (g(x) + (f(x))τ∗∗ + (h(x) + (f(x))τ∗∗

and

((g(x) + (f(x))) · (h(x) + (f(x)))) τ∗∗ = (g(x)h(x) + (f(x))τ∗∗

= g′(t)h′(t) + (f ′(t))

= (g′(t) + (f ′(t))) · (h′(t) + (f ′(t)))

= (g(x) + (f(x)))τ∗∗ · (h(x) + (f(x)))τ∗∗

so that τ∗∗ is a homomorphism. From the fact that g(x)τ∗ = g′(t) and τ∗ being an onto
isomorphism(Problem 3), the bijectivity of τ∗∗ follows. Therefore, τ∗∗ is a well defined
onto isomorphism between F [x]/(f(x)) and F ′[t]/(f ′(t)).
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5. In Example 3 at the end of this section prove that F (w) is the splitting field of x4+x2+1.

Proof. Observe that

f(x) = x4 + x2 + 1 = (x− w)(x+ w)(x− w2)(x+ w2)

so that f(x) splits over F in F (w). F (w) is the splitting field of f(x) over F .

6. Let F be the field of rational numbers. Determine the degrees of the splitting fields of
the following polynomials over F .
a) x4 + 1.

Solution. Let ζ = e
iπ
4 . We see that

f(x) = x4 + 1 = (x− ζ)(x+ ζ)(x− ζ3)(x+ ζ3)

so that F (ζ) is the splitting field of f(x) over F . Note that x4 + 1 is irreducible over
F = Q(take x = x + 1 and apply Eisenstein Criterion). Therefore, F (ζ) is extension field
of F of degree 4.

b) x6 + 1.

Solution. Note that f(x) = x6 + 1 has 6 distinct roots ei(
πk
3
+π

6 ), k = 0, 1, · · · , 5, so that

f(x) splits over F (ζ) where ζ = e
iπ
6 . Moreover, for g(x) = x4 − x2 + 1, g(ζ) = 0. Since

g(x) being irreducible in F = Q, [F (ζ), F ] = 4. Therefore, F (ζ) is the splitting field of
f(x) over F with degree 4.

c) x4 − 2.

Solution. Observe that

f(x) = x4 − 2 = (x− 4
√

2)(x+
4
√

2)(x− i 4
√

2)(x+ i
4
√

2)

so that E = F ( 4
√

2, i) is the splitting field of f(x) over F . Note that x2 + 1 still being
irreducible in F ( 4

√
2), [E : F ( 4

√
2)] = 2. Moreover, [F ( 4

√
2), F ] = 4. Therefore, the degree

of E over F is [E : F ] = [E : F ( 4
√

2)][F ( 4
√

2), F ] = 8.

d) x5 − 1.

Solution. Let ζ = e
i2π
5 . Observe that

f(x) = x5 − 1 = (x− ζ)(x− ζ2)(x− ζ3)(x− ζ4)(x− ζ5)

so that F (ζ) is the splitting field of f(x) over F . Since ζ is a root of g(x) = x4+x3+x2+x+1
and g(x) being irreducible in F = Q, [F (ζ) : F ] = 4.
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e) x6 + x3 + 1.

Solution. Let ζ = e
i2π
9 . Observe that

f(x) = x6 + x3 + 1 = (x− ζ)(x+ ζ)(x− ζ4)(x+ ζ4)(x− ζ7)(x− ζ7)

so that F (ζ) is the splitting field of f(x) over F . Since x6 + x3 + 1 is irreducible over
F = Q, [F (ζ) : F ] = 6.

7. If p is a prime number, prove that the splitting field over F , the field of rational numbers,
of the polynomial xp − 1 is of degree p− 1.

Proof. Let ζ = e
i2π
7 , the standard primitive root of unity p. Thence, f(x) = xp − 1 has

p distinct roots 1, ζ, ζ2, · · · , ζp−1. Thus, F (ζ) is the splitting field of f(x) over F . Let
g(x) = xp−1 + xp−2 + · · ·+ x+ 1. Then g(ζ) = 0 clearly. But from the Problem 3, Section
3.10, g(x) is irreducible over rationals. Therefore, [F (ζ) : F ] = p− 1.

8. If n > 1, prove that the splitting field of xn − 1 over the field of rational numbers is of
degree Φ(n) where Φ is the Euler Φ-function.

Proof. Let w denote the standard primitive nth root of unity. Since

xn − 1 = (x− w)(x− w2) · · · (x− wn−1)(x− wn)

we know that the splitting field of xn−1 over Q is Q(w). To show that [Q(w) : Q] = Φ(n),
we claim that the nth Cyclotomic polynomial φn(x) which has degree Φ(n), is satisfied by
w and irreducible in Q.

Definition (nth Cyclotimic Polynomial). For any positive integer n, the nth Cyclotomic
polynomial φn(x) is given by

φn(x) = (x− w1)(x− w2) · · · (x− ws)

where w1, w2, · · · , ws are primitive nth roots of unity.

Clearly from the definition, φn(x) is monic. Further, we know that there are Φ(n) many
primitive nth roots of unity for n. Hence, deg φn(x) = Φ(n). Now we prove an useful
Lemma:

Lemma. (A). Let n be a positive integer. Then

xn − 1 =
∏
d|n

φd(x).
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(⇒) Suppose w is a root of φd(x) where d | n. That is, w is a primitive dth root of unity.
Let q be the integer such that dq = n. Thus, wn = (wd)q = 1 so that w is a root of xn− 1.
Now we suppose w is a root of xn − 1. Then w is a nth root of unity. Let d denote the
order of w. Equivalently, wd = 1 so that w is a root of φd(x). As it is must that d | n and
hence, we conclude that xn − 1 and

∏
d|n φd(x) share all their roots. As both polynomials

are monic, xn − 1 =
∏

d|n φd(x).

Lemma. (B). For any positive integer n, φn(x) ∈ Z[x].

(⇒) We make induction on n. If n = 1, it is trivial. Suppose we assume the given statement
is true for all k < n. That is, φk(x) ∈ Z[x] for all k < n. Now from Lemma (A), we know
that xn − 1 =

∏
d|n φd(x). Let f(x) =

∏
d|n,d<n φd(x). By the induction hypothesis, f(x)

is in Z[x] and monic. Assuming xn − 1, f(x) as the polynomials in Q[x], by the division
algorithm we have

xn − 1 = f(x)q(x) + r(x) = f(x)φn(x),

where q(x), r(x) ∈ Q[x],deg r(x) < deg f(x). By the uniqueness of quotient and remainder,
q(x) = φn(x) and hence φn(x) ∈ Q[x]. Note that both xn − 1 and f(x) are monic in Z[x].
Hence, by Gauss’ Lemma, φn(x) ∈ Z[x].

Now we prove the irreducibility of φn(x) over Z(so that in Q).

Let f(x) ∈ Z[x] be a monic irreducible factor of φn(x). As φn(x) divides xn − 1 in Z[x],
there exists g(x) ∈ Z[x] such that f(x)g(x) = xn − 1. Let w be a primitive nth root of
unity, which is a zero of f(x). Let p a prime such that p - n. Thus, (p, n) = 1 and hence,
wp is also a primitive nth root of unity. Hence (wp)n− 1 = 0 = f(wp)g(wp) so that wp is
a root of either f(x) or g(x).
Suppose f(wp) 6= 0. This forces g(wp) = 0 and hence, w is a root of g(xp). Since f(x)
is a monic irreducible polynomial in Q[x], it is the minimal polynomial of w in Q[x]. As
Q[x] is a Principal Ideal Domain, f(x) | g(xp) in Q[x]. Moreover, as f(x) is monic, by
Gauss Lemma, f(x) | g(xp) in Z[x]. Say g(xp) = f(x)h(x) for some h(x) ∈ Z[x]. Let
g(x), f(x), h(x) denote the polynomials in Zp[x] with each coefficients reduced by modulo
p. Hence, g(xp) = h(x)h(x). Consequently, (g(x))p = h(x)f(x). From the fact that Zp[x]
is an Unique Factorization Domain, g(x) and f(x) has a common irreducible factor k(x).
Thus, f(x) = m1(x)k(x) and g(x) = m2(x)k(x) for some m1(x),m2(x) ∈ Zp[x]. Conse-
quently, xn−1 = f(x)g(x) = (k(x))2m1(x)m2(x) in Zp[x] so that xn−1 has a multiple root
in some extension of Zp. As Zp is a field of characteristic p, xn − 1 must be a polynomial
of form t(xp). But since p - n, it is impossible. So this contradicts the fact that xn − 1 has
multiple root; hence f(wp) = 0. Thus, wp is a root of f(x).
Let ζ be an arbitrary primitive nth root of unity. It is must that ζ ∈ (w) so that ζ = wk

for some positive integer k such that (k, n) = 1. Considering the prime factorization of
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k, let k = pi11 p
i2
2 · · · piss where each pj - n. Recall that wp is also a root of f(x) for every

prime p - n. So does wk = ζ; ζ is a root of f(x). Consequently, f(x) and φn(x) shares all
their roots. Both being monic in Z[x], f(x) = φn(x). Therefore, φn(x) is irreducible in Z[x].

Ultimately, if w denote the standard primitive nth root of unity, φn(w) = 0 and with the
fact that deg φn(x) = Φ(n), we have [Q(w) : Q] = Φ(n).

9. If F is the field of rational numbers, find necessary and sufficient conditions on a and b
so that the splitting field of x3 + ax+ b has degree exactly 3 over F .

Proof. First we prove that f(x) = x3 +ax+b must be irreducible in order to have splitting
field of degree 3. Suppose f(x) was reducible, then f(x) has α ∈ Q as a root so that the
degree of the splitting field is less or equal to 2. Thus, f(x) is irreducible in Q. Moreover,
f(x) can have either three of the following:

• f(x) has multiple roots,

• f(x) has one real and two non-real roots,

• f(x) has three distinct real roots.

First note that f(x) cannot have multiple roots since it is irreducible. Suppose f(x) has
now a complex root w and non-rational real root α. As w 6∈ Q(α), the degree of splitting
field must exceed 3, so that a contradiction. So, there is only one choice left, that is, f(x)
has three distinct real roots. i.e.,

f(x) = (x− α)(x− β)(x− γ),

where α, β, γ ∈ R−Q are all distinct. Now by Viete’s theorem,

α+ β + γ = 0,

αβ + βγ + γα = a,

αβγ = b.

For f(x) to have splitting field E of degree 3 over F , it is must that β, γ ∈ Q(α). From
above, we can find that β + γ = −α, βγ = −b/α = α2 + a so that the polynomial g(t)

g(t) = t2 + αt+ (α2 + a) ∈ Q(α)[t]

is the polynomial having β and γ as root. Note that β, γ ∈ Q(α) if and only if the
discriminant α2 − 4(α2 + a) = −3α2 − 4a is a square in Q(α).

10. Let p be a prime number and let F = Jp, the field of integers mod p.
a) Prove that there is an irreducible polynomial of degree 2 over F .
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Proof. Using the fact that f(x) = x2+1 is irreducible in Jp, p = 4k+3 and g(x) = x2+x+1
is irreducible in Jp, p = 4k + 1, there always exists irreducible polynomial of degree 2 over
F .

b) Use this polynomial to construct a field with p2 elements.

Solution. Taking f(x) defined as

f(x) =

{
x2 + 1, if p = 4k + 3

x2 + x+ 1, if p = 4k + 1

then Jp/(f(x)) is a field with p2 elements.

c) Prove that any two irreducible polynomials of degree 2 over F lead to isomorphic fields
with p2 elements.

Proof. It is enough to show that any fields of p2 elements are isomorphic. Each irreducible
polynomials of degree 2 over F leads to field of p2 elements. Denote one of them as
F ∗, where |F ∗| = p2. Since every finite field of order pn has Fp ' Zp as its subfield,

f(x) = xp
2 − x ∈ Fp[x] is a polynomial with at most p2 elements. But we know that f(x)

has distinct roots and f(a) = 0 for all a ∈ F ∗, F ∗ is the splitting field of f(x) over Fp.
Since splitting fields of a polynomial over a given field must be unique(upto isomorphism),
we are done.

11. If E is an extension of F and if f(x) ∈ F [x] and if φ is an automorphism of E leaving
every element of F fixed, prove that φ must take a root of f(x) lying in E into a root of
f(x) in E.

Proof. Let f(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x]. Observe that

(f(a))φ = (a0 + a1a+ · · · anan)φ

= a0φ+ (a1φ)(aφ) + · · ·+ (anφ)(aφ)n

= f(aφ)

so that if f(a) = 0 for some root a ∈ E, then 0 = (f(a))φ = f(aφ). Hence aφ ∈ E is a
root of f(x) in E.

12. Prove that F ( 3
√

2), where F is the field of rational numbers, has no automorphisms
other than the identity automorphism.
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Proof. We first prove that automorphism σ in F ( 3
√

2) fixes Q = F . It is clear that σ(1) = 1.
Thus, for a positive integer n,

σ(n) = σ(n · 1) = σ(1) + σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= n.

This also holds for negative integer since σ(−n) = σ(−1 ·n) = σ(−1)n = −n. Now consider
the reciprocal 1

m , where m > 0 ∈ Z. Then we have

σ(1) = σ

(
1

m
+

1

m
+ · · ·+ 1

m

)
︸ ︷︷ ︸

m times

= σ

(
1

m

)
+ σ

(
1

m

)
+ · · ·+ σ

(
1

m

)
︸ ︷︷ ︸

m times

= mσ

(
1

m

)

so that σ

(
1

m

)
=

1

m
. Combining the results, we have that σ

( n
m

)
=

n

m
. Thus, σ fixes Q.

Now, we have that 2 = σ(2) = σ( 3
√

2
3
) = σ( 3

√
2)3 so that σ( 3

√
2), in the subfield of R, is

must that σ( 3
√

2) = 3
√

2. Since any element in F ( 3
√

2) is the form of a0 + a1
3
√

2 + a2
3
√

2
2
,

σ(a0 + a1
3
√

2 + a2
3
√

2
2
) = a0 + a1

3
√

2 + a2
3
√

2
2

so that σ = id, an identity automorphism.

13. Using the result of Problem 11, prove that if the complex number α is a root of the
polynomial p(x) having real coefficients then α, the complex conjugate of α, is also a root
of p(x).

Proof. Let σ : C → C be a mapping defined by σ(a + bi) = a − bi, where a, b ∈ R. As σ
fixes the real part of the complex number and with its automorphic nature, σ(α) = α is
also a root of p(x).

14. Using the result of Problem 11, prove that if m is an integer which is not a perfect
square and if α + β

√
m (α, β rational) is the root of a polynomial p(x) having rational

coefficients, then α− β
√
m is also a root of p(x).

Proof. Consider the extension field Q(
√
m). Since it has degree 2 over Q, every element of

Q(
√
m) is the form of x + y

√
m where x, y ∈ Q. Note that in any field containing Q, its

automorphism must fix the rationals. Let σ : Q(
√
m)→ Q(

√
m) defined by σ(x+ y

√
m) =

x− y
√
m. Clearly σ is an automorphism. Therefore, if α+ β

√
m is a root of p(x) ∈ Q[x],

σ(α+ β
√
m) = α− β

√
m is also a root of p(x).

8



15. If F is the field of real numbers, prove that if φ is an automorphism of F , then φ leaves
every element of F fixed.

Proof. Let φ be an automorphism of F . Then it must send positive to positive, as for
any x > 0 ∈ R, there exists y such that x = y2 and hence φ(x) = φ(y2) > 0. Thus, φ
preserves the order(increasing). For the sake of contradiction, if there is x ∈ R such that
φ(x) 6= x, then, WLOG, we can assume that x < φ(x). Moreover, we can find q ∈ Q such
that x < q < φ(x). But this implies that φ(x) < φ(q) = q < φ(x), which is a contradiction.
Therefore, φ must be an identity map.

16. a) Find all real quaternions t = a0 + a1i+ a2j + a3k satisfying t2 = −1.

Proof. By simple calculation,

t2 = −1 ⇐⇒ (a20 − a21 − a22 − a23) + (2a0a1)i+ (2a0a2)j + (2a0a3)k = −1

⇐⇒ a0 = 0, a21 + a22 + a23 = 1.

Hence, t = a0 + a1i+ a2j+ a3k satisfies t2 = −1 if and only if a0 = 0, a21 + a22 + a23 = 1.

b) For a t as in part a) prove we can find a real quaternion s such that sts−1 = i.

Proof. Let t = −i and s = j. Then j(−i)(−j) = i.

9


