Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

December 5, 2020

Problems in Section 5.3.

1. In the proof of Lemma 5.3.1, prove that the degree of q(x) is one less than that of p(x).

Proof. Assuming p(x) as a polynomial in K[x]. Then from p(x) = (x-b)q(x) + p(b) implies that

$$\deg(p(x)) = \deg((x-b)q(x) + p(b)) = \deg((x-b)q(x)) = \deg(x-b) + \deg(q(x))$$
 in $K[x]$. But since $\deg(x-b) = 1$, $\deg(q(x))$ is exactly one less than $\deg(p(x))$.

2. In the proof of Theorem 5.3.1, prove in all detail that the elements $1+V, x+V, \dots, x^{n-1}+V$ form a basis of E over F.

Proof. Refer the Problem 2, Section 5.1.

3. Prove Lemma 5.3.3 in all detail.

Proof. We prove that the mapping $\tau^*: F[x] \to F'[t]$ defined by

$$f(x)\tau^* = (a_0 + a_1x + \dots + a_nx^n)\tau^* = (a_0\tau) + (a_1\tau)t + \dots + (a_n\tau)t^n$$

where $\tau: F \to F'$ is an onto isomorphism. Choose $f(x), g(x) \in F[x]$ where

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m.$$

Observe that

$$(f(x) + g(x))\tau^* = \left(\sum_{i=0}^k c_i x^i\right)\tau^* = \sum_{i=0}^k (c_i \tau)t^i$$

$$= \sum_{i=0}^k (a_i + b_i)\tau t^i = \sum_{i=0}^k (a_i \tau + b_i \tau)t^i$$

$$= \sum_{i=0}^k (a_i \tau)t^i + \sum_{i=0}^k (b_i \tau)t^i = f(x)\tau^* + g(x)\tau^*$$

and by denoting $d_i = \sum_{j=0}^{i} a_j b_{i-j}, f(x)g(x) = \sum_{i=0}^{l} d_i x^i,$

$$(f(x)g(x))\tau^* = \left(\sum_{i=0}^l d_i x^i\right)\tau^* = \sum_{i=0}^l (d_i \tau)t^i$$

$$= \sum_{i=0}^l \left(\sum_{j=0}^i a_j b_{i-j}\right)\tau t^i$$

$$= \sum_{i=0}^l \left(\sum_{j=0}^i (a_j \tau)(b_{i-j} \tau)\right)t^i = f(x)\tau^* \cdot g(x)\tau^*.$$

Thus, τ^* is a homomorphism. Recall the fact that two polynomials are equal if and only if their coefficients are componentwise equal. Now since τ is an onto isomorphism, the bijectivity of τ^* follows. Therefore, τ^* is an isomorphism of F[x] onto F'[t].

4. Show that τ^{**} in Lemma 5.3.4 is well defined and is an isomorphism of F[x]/(f(x)) onto F'[t]/(f'(t)).

Proof. We prove that the mapping $\tau^{**}: F[x]/(f(x)) \to F'[t]/(f'(t))$ defined by

$$(g(x) + (f(x))\tau^{**} = g'(t) + (f'(t))$$

is a well defined onto isomorphism. Choose g(x), h(x) such that g(x) + (f(x)) = h(x) + (f(x)). That is, g(x) - h(x) = p(x)f(x) for some $p(x) \in F[x]$. Then if follows that g'(t) - h'(t) = p'(t)f'(t) so that g'(t) + (f'(t)) = h'(t) + (f'(t)). Hence, τ^{**} is well defined. Now we show that τ^{**} is a homomorphism. Observe that

$$((g(x) + (f(x))) + (h(x) + (f(x)))) \tau^{**} = (g(x) + h(x) + (f(x)))\tau^{**}$$

$$= g'(t) + h'(t) + (f'(t))$$

$$= (g'(t) + (f'(t))) + (h'(t) + (f'(t)))$$

$$= (g(x) + (f(x))\tau^{**} + (h(x) + (f(x))\tau^{**})$$

and

$$((g(x) + (f(x))) \cdot (h(x) + (f(x)))) \tau^{**} = (g(x)h(x) + (f(x))\tau^{**}$$

$$= g'(t)h'(t) + (f'(t))$$

$$= (g'(t) + (f'(t))) \cdot (h'(t) + (f'(t)))$$

$$= (g(x) + (f(x)))\tau^{**} \cdot (h(x) + (f(x)))\tau^{**}$$

so that τ^{**} is a homomorphism. From the fact that $g(x)\tau^* = g'(t)$ and τ^* being an onto isomorphism(Problem 3), the bijectivity of τ^{**} follows. Therefore, τ^{**} is a well defined onto isomorphism between F[x]/(f(x)) and F'[t]/(f'(t)).

5. In Example 3 at the end of this section prove that F(w) is the splitting field of $x^4 + x^2 + 1$.

Proof. Observe that

$$f(x) = x^4 + x^2 + 1 = (x - w)(x + w)(x - w^2)(x + w^2)$$

so that f(x) splits over F in F(w). F(w) is the splitting field of f(x) over F.

6. Let F be the field of rational numbers. Determine the degrees of the splitting fields of the following polynomials over F. a) $x^4 + 1$.

Solution. Let $\zeta = e^{\frac{i\pi}{4}}$. We see that

$$f(x) = x^4 + 1 = (x - \zeta)(x + \zeta)(x - \zeta^3)(x + \zeta^3)$$

so that $F(\zeta)$ is the splitting field of f(x) over F. Note that $x^4 + 1$ is irreducible over $F = \mathbb{Q}(\text{take } x = x + 1 \text{ and apply Eisenstein Criterion})$. Therefore, $F(\zeta)$ is extension field of F of degree 4.

b)
$$x^6 + 1$$
.

Solution. Note that $f(x) = x^6 + 1$ has 6 distinct roots $e^{i\left(\frac{\pi k}{3} + \frac{\pi}{6}\right)}$, $k = 0, 1, \dots, 5$, so that f(x) splits over $F(\zeta)$ where $\zeta = e^{\frac{i\pi}{6}}$. Moreover, for $g(x) = x^4 - x^2 + 1$, $g(\zeta) = 0$. Since g(x) being irreducible in $F = \mathbb{Q}$, $[F(\zeta), F] = 4$. Therefore, $F(\zeta)$ is the splitting field of f(x) over F with degree 4.

c)
$$x^4 - 2$$
.

Solution. Observe that

$$f(x) = x^4 - 2 = (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x - i\sqrt[4]{2})(x + i\sqrt[4]{2})$$

so that $E = F(\sqrt[4]{2}, i)$ is the splitting field of f(x) over F. Note that $x^2 + 1$ still being irreducible in $F(\sqrt[4]{2})$, $[E : F(\sqrt[4]{2})] = 2$. Moreover, $[F(\sqrt[4]{2}), F] = 4$. Therefore, the degree of E over F is $[E : F] = [E : F(\sqrt[4]{2})][F(\sqrt[4]{2}), F] = 8$.

d)
$$x^5 - 1$$
.

Solution. Let $\zeta = e^{\frac{i2\pi}{5}}$. Observe that

$$f(x) = x^5 - 1 = (x - \zeta)(x - \zeta^2)(x - \zeta^3)(x - \zeta^4)(x - \zeta^5)$$

so that $F(\zeta)$ is the splitting field of f(x) over F. Since ζ is a root of $g(x) = x^4 + x^3 + x^2 + x + 1$ and g(x) being irreducible in $F = \mathbb{Q}$, $[F(\zeta) : F] = 4$.

e)
$$x^6 + x^3 + 1$$
.

Solution. Let $\zeta = e^{\frac{i2\pi}{9}}$. Observe that

$$f(x) = x^{6} + x^{3} + 1 = (x - \zeta)(x + \zeta)(x - \zeta^{4})(x + \zeta^{4})(x - \zeta^{7})(x - \zeta^{7})$$

so that $F(\zeta)$ is the splitting field of f(x) over F. Since $x^6 + x^3 + 1$ is irreducible over $F = \mathbb{Q}$, $[F(\zeta) : F] = 6$.

7. If p is a prime number, prove that the splitting field over F, the field of rational numbers, of the polynomial $x^p - 1$ is of degree p - 1.

Proof. Let $\zeta = e^{\frac{i2\pi}{7}}$, the standard primitive root of unity p. Thence, $f(x) = x^p - 1$ has p distinct roots $1, \zeta, \zeta^2, \dots, \zeta^{p-1}$. Thus, $F(\zeta)$ is the splitting field of f(x) over F. Let $g(x) = x^{p-1} + x^{p-2} + \dots + x + 1$. Then $g(\zeta) = 0$ clearly. But from the Problem 3, Section 3.10, g(x) is irreducible over rationals. Therefore, $[F(\zeta):F] = p - 1$.

8. If n > 1, prove that the splitting field of $x^n - 1$ over the field of rational numbers is of degree $\Phi(n)$ where Φ is the Euler Φ -function.

Proof. Let w denote the standard primitive nth root of unity. Since

$$x^{n} - 1 = (x - w)(x - w^{2}) \cdots (x - w^{n-1})(x - w^{n})$$

we know that the splitting field of $x^n - 1$ over \mathbb{Q} is $\mathbb{Q}(w)$. To show that $[\mathbb{Q}(w) : \mathbb{Q}] = \Phi(n)$, we claim that the *n*th Cyclotomic polynomial $\phi_n(x)$ which has degree $\Phi(n)$, is satisfied by w and irreducible in \mathbb{Q} .

Definition (nth Cyclotimic Polynomial). For any positive integer n, the nth Cyclotomic polynomial $\phi_n(x)$ is given by

$$\phi_n(x) = (x - w_1)(x - w_2) \cdots (x - w_s)$$

where w_1, w_2, \cdots, w_s are primitive nth roots of unity.

Clearly from the definition, $\phi_n(x)$ is monic. Further, we know that there are $\Phi(n)$ many primitive nth roots of unity for n. Hence, $\deg \phi_n(x) = \Phi(n)$. Now we prove an useful Lemma:

Lemma. (A). Let n be a positive integer. Then

$$x^n - 1 = \prod_{d|n} \phi_d(x).$$

(\Rightarrow) Suppose w is a root of $\phi_d(x)$ where $d \mid n$. That is, w is a primitive dth root of unity. Let q be the integer such that dq = n. Thus, $w^n = (w^d)^q = 1$ so that w is a root of $x^n - 1$. Now we suppose w is a root of $x^n - 1$. Then w is a nth root of unity. Let d denote the order of w. Equivalently, $w^d = 1$ so that w is a root of $\phi_d(x)$. As it is must that $d \mid n$ and hence, we conclude that $x^n - 1$ and $\prod_{d \mid n} \phi_d(x)$ share all their roots. As both polynomials are monic, $x^n - 1 = \prod_{d \mid n} \phi_d(x)$.

Lemma. (B). For any positive integer $n, \phi_n(x) \in \mathbb{Z}[x]$.

(\Rightarrow) We make induction on n. If n=1, it is trivial. Suppose we assume the given statement is true for all k < n. That is, $\phi_k(x) \in \mathbb{Z}[x]$ for all k < n. Now from Lemma (A), we know that $x^n - 1 = \prod_{d|n} \phi_d(x)$. Let $f(x) = \prod_{d|n,d < n} \phi_d(x)$. By the induction hypothesis, f(x) is in $\mathbb{Z}[x]$ and monic. Assuming $x^n - 1$, f(x) as the polynomials in $\mathbb{Q}[x]$, by the division algorithm we have

$$x^{n} - 1 = f(x)q(x) + r(x) = f(x)\phi_{n}(x),$$

where $q(x), r(x) \in \mathbb{Q}[x]$, $\deg r(x) < \deg f(x)$. By the uniqueness of quotient and remainder, $q(x) = \phi_n(x)$ and hence $\phi_n(x) \in \mathbb{Q}[x]$. Note that both $x^n - 1$ and f(x) are monic in $\mathbb{Z}[x]$. Hence, by Gauss' Lemma, $\phi_n(x) \in \mathbb{Z}[x]$.

Now we prove the irreducibility of $\phi_n(x)$ over $\mathbb{Z}(\text{so that in }\mathbb{Q})$.

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible factor of $\phi_n(x)$. As $\phi_n(x)$ divides $x^n - 1$ in $\mathbb{Z}[x]$, there exists $g(x) \in \mathbb{Z}[x]$ such that $f(x)g(x) = x^n - 1$. Let w be a primitive nth root of unity, which is a zero of f(x). Let p a prime such that $p \nmid n$. Thus, (p, n) = 1 and hence, w^p is also a primitive nth root of unity. Hence $(w^p)n - 1 = 0 = f(w^p)g(w^p)$ so that w^p is a root of either f(x) or g(x).

Suppose $f(w^p) \neq 0$. This forces $g(w^p) = 0$ and hence, w is a root of $g(x^p)$. Since f(x) is a monic irreducible polynomial in $\mathbb{Q}[x]$, it is the minimal polynomial of w in $\mathbb{Q}[x]$. As $\mathbb{Q}[x]$ is a Principal Ideal Domain, $f(x) \mid g(x^p)$ in $\mathbb{Q}[x]$. Moreover, as f(x) is monic, by Gauss Lemma, $f(x) \mid g(x^p)$ in $\mathbb{Z}[x]$. Say $g(x^p) = f(x)h(x)$ for some $h(x) \in \mathbb{Z}[x]$. Let $\overline{g}(x), \overline{f}(x), \overline{h}(x)$ denote the polynomials in $\mathbb{Z}_p[x]$ with each coefficients reduced by modulo p. Hence, $\overline{g}(x^p) = \overline{h}(x)\overline{h}(x)$. Consequently, $(\overline{g}(x))^p = \overline{h}(x)\overline{f}(x)$. From the fact that $\mathbb{Z}_p[x]$ is an Unique Factorization Domain, $\overline{g}(x)$ and $\overline{f}(x)$ has a common irreducible factor k(x). Thus, $\overline{f}(x) = m_1(x)k(x)$ and $\overline{g}(x) = m_2(x)k(x)$ for some $m_1(x), m_2(x) \in \mathbb{Z}_p[x]$. Consequently, $x^n - 1 = \overline{f}(x)\overline{g}(x) = (k(x))^2 m_1(x)m_2(x)$ in $\mathbb{Z}_p[x]$ so that $x^n - 1$ has a multiple root in some extension of \mathbb{Z}_p . As \mathbb{Z}_p is a field of characteristic p, $x^n - 1$ must be a polynomial of form $t(x^p)$. But since $p \nmid n$, it is impossible. So this contradicts the fact that $x^n - 1$ has multiple root; hence $f(w^p) = 0$. Thus, w^p is a root of f(x).

Let ζ be an arbitrary primitive *n*th root of unity. It is must that $\zeta \in (w)$ so that $\zeta = w^k$ for some positive integer k such that (k, n) = 1. Considering the prime factorization of

k, let $k = p_1^{i_1} p_2^{i_2} \cdots p_s^{i_s}$ where each $p_j \nmid n$. Recall that w^p is also a root of f(x) for every prime $p \nmid n$. So does $w^k = \zeta$; ζ is a root of f(x). Consequently, f(x) and $\phi_n(x)$ shares all their roots. Both being monic in $\mathbb{Z}[x]$, $f(x) = \phi_n(x)$. Therefore, $\phi_n(x)$ is irreducible in $\mathbb{Z}[x]$.

Ultimately, if w denote the standard primitive nth root of unity, $\phi_n(w) = 0$ and with the fact that deg $\phi_n(x) = \Phi(n)$, we have $[\mathbb{Q}(w) : \mathbb{Q}] = \Phi(n)$.

9. If F is the field of rational numbers, find necessary and sufficient conditions on a and b so that the splitting field of $x^3 + ax + b$ has degree exactly 3 over F.

Proof. First we prove that $f(x) = x^3 + ax + b$ must be irreducible in order to have splitting field of degree 3. Suppose f(x) was reducible, then f(x) has $\alpha \in \mathbb{Q}$ as a root so that the degree of the splitting field is less or equal to 2. Thus, f(x) is irreducible in Q. Moreover, f(x) can have either three of the following:

- f(x) has multiple roots,
- f(x) has one real and two non-real roots,
- f(x) has three distinct real roots.

First note that f(x) cannot have multiple roots since it is irreducible. Suppose f(x) has now a complex root w and non-rational real root α . As $w \notin \mathbb{Q}(\alpha)$, the degree of splitting field must exceed 3, so that a contradiction. So, there is only one choice left, that is, f(x) has three distinct real roots. i.e.,

$$f(x) = (x - \alpha)(x - \beta)(x - \gamma),$$

where $\alpha, \beta, \gamma \in \mathbb{R} - \mathbb{Q}$ are all distinct. Now by Viete's theorem,

$$\alpha + \beta + \gamma = 0,$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = a,$$

$$\alpha\beta\gamma = b.$$

For f(x) to have splitting field E of degree 3 over F, it is must that $\beta, \gamma \in \mathbb{Q}(\alpha)$. From above, we can find that $\beta + \gamma = -\alpha$, $\beta \gamma = -b/\alpha = \alpha^2 + a$ so that the polynomial g(t)

$$g(t) = t^2 + \alpha t + (\alpha^2 + a) \in \mathbb{Q}(\alpha)[t]$$

is the polynomial having β and γ as root. Note that $\beta, \gamma \in \mathbb{Q}(\alpha)$ if and only if the discriminant $\alpha^2 - 4(\alpha^2 + a) = -3\alpha^2 - 4a$ is a square in $\mathbb{Q}(\alpha)$.

- 10. Let p be a prime number and let $F = J_p$, the field of integers mod p.
- a) Prove that there is an irreducible polynomial of degree 2 over F.

Proof. Using the fact that $f(x) = x^2 + 1$ is irreducible in J_p , p = 4k + 3 and $g(x) = x^2 + x + 1$ is irreducible in J_p , p = 4k + 1, there always exists irreducible polynomial of degree 2 over F.

b) Use this polynomial to construct a field with p^2 elements.

Solution. Taking f(x) defined as

$$f(x) = \begin{cases} x^2 + 1, & \text{if } p = 4k + 3\\ x^2 + x + 1, & \text{if } p = 4k + 1 \end{cases}$$

then $J_p/(f(x))$ is a field with p^2 elements.

c) Prove that any two irreducible polynomials of degree 2 over F lead to isomorphic fields with p^2 elements.

Proof. It is enough to show that any fields of p^2 elements are isomorphic. Each irreducible polynomials of degree 2 over F leads to field of p^2 elements. Denote one of them as F^* , where $|F^*| = p^2$. Since every finite field of order p^n has $F_p \simeq Z_p$ as its subfield, $f(x) = x^{p^2} - x \in F_p[x]$ is a polynomial with at most p^2 elements. But we know that f(x) has distinct roots and f(a) = 0 for all $a \in F^*$, F^* is the splitting field of f(x) over F_p . Since splitting fields of a polynomial over a given field must be unique(upto isomorphism), we are done.

11. If E is an extension of F and if $f(x) \in F[x]$ and if ϕ is an automorphism of E leaving every element of F fixed, prove that ϕ must take a root of f(x) lying in E into a root of f(x) in E.

Proof. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$. Observe that

$$(f(a))\phi = (a_0 + a_1 a + \dots + a_n a^n)\phi$$

= $a_0 \phi + (a_1 \phi)(a \phi) + \dots + (a_n \phi)(a \phi)^n$
= $f(a \phi)$

so that if f(a) = 0 for some root $a \in E$, then $0 = (f(a))\phi = f(a\phi)$. Hence $a\phi \in E$ is a root of f(x) in E.

12. Prove that $F(\sqrt[3]{2})$, where F is the field of rational numbers, has no automorphisms other than the identity automorphism.

Proof. We first prove that automorphism σ in $F(\sqrt[3]{2})$ fixes $\mathbb{Q} = F$. It is clear that $\sigma(1) = 1$. Thus, for a positive integer n,

$$\sigma(n) = \sigma(n \cdot 1) = \underbrace{\sigma(1) + \sigma(1) + \dots + \sigma(1)}_{n \text{ times}} = n.$$

This also holds for negative integer since $\sigma(-n) = \sigma(-1 \cdot n) = \sigma(-1)n = -n$. Now consider the reciprocal $\frac{1}{m}$, where $m > 0 \in \mathbb{Z}$. Then we have

$$\sigma(1) = \sigma \underbrace{\left(\frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m}\right)}_{m \text{ times}}$$

$$= \sigma \underbrace{\left(\frac{1}{m}\right) + \sigma \left(\frac{1}{m}\right) + \dots + \sigma \left(\frac{1}{m}\right)}_{m \text{ times}} = m\sigma \left(\frac{1}{m}\right)$$

so that $\sigma\left(\frac{1}{m}\right) = \frac{1}{m}$. Combining the results, we have that $\sigma\left(\frac{n}{m}\right) = \frac{n}{m}$. Thus, σ fixes \mathbb{Q} . Now, we have that $2 = \sigma(2) = \sigma(\sqrt[3]{2}) = \sigma(\sqrt[3]{2})^3$ so that $\sigma(\sqrt[3]{2})$, in the subfield of \mathbb{R} , is must that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$. Since any element in $F(\sqrt[3]{2})$ is the form of $a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{2}$,

$$\sigma(a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{2}^2) = a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{2}^2$$

so that $\sigma = id$, an identity automorphism.

13. Using the result of Problem 11, prove that if the complex number α is a root of the polynomial p(x) having real coefficients then $\overline{\alpha}$, the complex conjugate of α , is also a root of p(x).

Proof. Let $\sigma: \mathbb{C} \to \mathbb{C}$ be a mapping defined by $\sigma(a+bi) = a-bi$, where $a, b \in \mathbb{R}$. As σ fixes the real part of the complex number and with its automorphic nature, $\sigma(\alpha) = \overline{\alpha}$ is also a root of p(x).

14. Using the result of Problem 11, prove that if m is an integer which is not a perfect square and if $\alpha + \beta \sqrt{m}$ (α, β rational) is the root of a polynomial p(x) having rational coefficients, then $\alpha - \beta \sqrt{m}$ is also a root of p(x).

Proof. Consider the extension field $\mathbb{Q}(\sqrt{m})$. Since it has degree 2 over \mathbb{Q} , every element of $\mathbb{Q}(\sqrt{m})$ is the form of $x+y\sqrt{m}$ where $x,y\in\mathbb{Q}$. Note that in any field containing \mathbb{Q} , its automorphism must fix the rationals. Let $\sigma:\mathbb{Q}(\sqrt{m})\to\mathbb{Q}(\sqrt{m})$ defined by $\sigma(x+y\sqrt{m})=x-y\sqrt{m}$. Clearly σ is an automorphism. Therefore, if $\alpha+\beta\sqrt{m}$ is a root of $p(x)\in\mathbb{Q}[x]$, $\sigma(\alpha+\beta\sqrt{m})=\alpha-\beta\sqrt{m}$ is also a root of p(x).

15. If F is the field of real numbers, prove that if ϕ is an automorphism of F, then ϕ leaves every element of F fixed.

Proof. Let ϕ be an automorphism of F. Then it must send positive to positive, as for any $x>0\in\mathbb{R}$, there exists y such that $x=y^2$ and hence $\phi(x)=\phi(y^2)>0$. Thus, ϕ preserves the order(increasing). For the sake of contradiction, if there is $x\in\mathbb{R}$ such that $\phi(x)\neq x$, then, WLOG, we can assume that $x<\phi(x)$. Moreover, we can find $q\in\mathbb{Q}$ such that $x< q<\phi(x)$. But this implies that $\phi(x)<\phi(q)=q<\phi(x)$, which is a contradiction. Therefore, ϕ must be an identity map.

16. a) Find all real quaternions $t = a_0 + a_1i + a_2j + a_3k$ satisfying $t^2 = -1$.

Proof. By simple calculation,

$$t^{2} = -1 \iff (a_{0}^{2} - a_{1}^{2} - a_{2}^{2} - a_{3}^{2}) + (2a_{0}a_{1})i + (2a_{0}a_{2})j + (2a_{0}a_{3})k = -1$$

$$\iff a_{0} = 0, \quad a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 1.$$

Hence, $t = a_0 + a_1 i + a_2 j + a_3 k$ satisfies $t^2 = -1$ if and only if $a_0 = 0, a_1^2 + a_2^2 + a_3^2 = 1$.

b) For a t as in part a) prove we can find a real quaternion s such that $sts^{-1}=i$.

Proof. Let
$$t = -i$$
 and $s = j$. Then $j(-i)(-j) = i$.