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Problems in Section 5.3.

1. In the proof of Lemma 5.3.1, prove that the degree of ¢(x) is one less than that of p(z).

Proof. Assuming p(x) as a polynomial in K [z]. Then from p(z) = (z—b)q(x)+p(b) implies
that

deg(p(x)) = deg((x — b)q(x) + p(b)) = deg((z — b)q(x)) = deg(x — b) + deg(q(x))
in K[z]. But since deg(z — b) = 1, deg(gq(x)) is exactly one less than deg(p(z)). O

2. In the proof of Theorem 5.3.1, prove in all detail that the elements 1+V, z+V,--- , 2" 14
V form a basis of FE over F'.

Proof. Refer the Problem 2, Section 5.1. O
3. Prove Lemma 5.3.3 in all detail.
Proof. We prove that the mapping 7* : F[z] — F'[t] defined by
f@)T* = (ap + a1z + - - - anz™)7™ = (ap7) + (a17)t + - - - (ap7)t"
where 7 : F — F’ is an onto isomorphism. Choose f(z), g(z) € F[z] where

flx)=ap+ a1z + - apx”,
g(x) =by + brx + - byz™.
Observe that
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and by denoting d; = Zj’:o a;bi—j, f(z)g(x) = Zé:o d;x’,

Thus, 7" is a homomorphism. Recall the fact that two polynomials are equal if and only
if their coefficients are componentwise equal. Now since 7 is an onto isomorphism, the
bijectivity of 7* follows. Therefore, 7* is an isomorphism of F[z] onto F’[t]. O

4. Show that 7** in Lemma 5.3.4 is well defined and is an isomorphism of F[x]/(f(z)) onto
FI[t)/(f/(2))-
Proof. We prove that the mapping 7** : F[z|/(f(z)) — F'[t]/(f'(t)) defined by

(9(x) + (f(2)7™" = 4'(t) + (f'())

is a well defined onto isomorphism. Choose g(z), h(z) such that g(x) + (f(z)) = h(z) +
(f(x)). That is, g(x) — h(z) = p(z)f(z) for some p(z) € Flz]. Then if follows that
g'(t) = h(t) =p'(t)f(t) so that ¢'(t) + (f'(t)) = K'(t) + (f'(t)). Hence, 7** is well defined.
Now we show that 7** is a homomorphism. Observe that

and

(') + (f'(1)))
(@) 7" - (W) + (f(2)))7™
so that 7%* is a homomorphism. From the fact that g(z)7* = ¢'(¢t) and 7* being an onto

isomorphism(Problem 3), the bijectivity of 7** follows. Therefore, 7** is a well defined
onto isomorphism between F[z]|/(f(x)) and F'[t]/(f'(t)). O
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5. In Example 3 at the end of this section prove that F'(w) is the splitting field of 2% +x2+1.
Proof. Observe that

fx)=2"+22+1=(z —w)(z+w)(z — v?)(z + w?)
so that f(x) splits over F'in F(w). F(w) is the splitting field of f(x) over F. O

6. Let I be the field of rational numbers. Determine the degrees of the splitting fields of
the following polynomials over F'.
a) 2t + 1.

Solution. Let ( = e'T. We see that
f@)=a'+1=(2 =+ - )@+ )

so that F(C) is the splitting field of f(x) over F. Note that x* + 1 is irreducible over
F = Q(take x = x 4+ 1 and apply Eisenstein Criterion). Therefore, F'({) is extension field
of F of degree 4. O

b) 2% + 1.

Solution. Note that f(x) = 2% + 1 has 6 distinct roots ei(%k“L%), k=20,1,---,5, so that
f(x) splits over F(¢) where ¢ = e’s . Moreover, for g(z) = z* — 22 +1, g(¢) = 0. Since
g(x) being irreducible in F' = Q, [F(¢), F] = 4. Therefore, F({) is the splitting field of
f(x) over F with degree 4. O

c) zt —2.
Solution. Observe that
fx)=2—2=(z - V2)(z+ V2)(z — iV2)(z +iV?2)

so that E = F(+/2,4) is the splitting field of f(z) over F. Note that 22 + 1 still being
irreducible in F(v/2), [E : F(v/2)] = 2. Moreover, [F(v/2), F] = 4. Therefore, the degree
of E over Fis [E: F] = [E: F(v2)][F(v2),F] = 8. O

d) 2° — 1.
Solution. Let { = 5", Observe that
fla)y=a"—1= (@@ -3z - ) - -)

so that F(() is the splitting field of f(z) over F. Since ( is a root of g(z) = z*+23+2%+2+1
and g(x) being irreducible in F' = Q, [F({) : F]| = 4. O



e) 28 + a3 + 1.
Solution. Let ¢ = e's". Observe that
fl@)=a+2° +1=(z - e+ e =D+ e - M@ -0

so that F(¢) is the splitting field of f(x) over F. Since 2° 4 2% + 1 is irreducible over
F=Q,[F():F]=6. O

7. If p is a prime number, prove that the splitting field over F', the field of rational numbers,
of the polynomial P — 1 is of degree p — 1.

Proof. Let ( = eﬁTW, the standard primitive root of unity p. Thence, f(x) = aP — 1 has
p distinct roots 1,¢,¢2,--- ,¢P~L. Thus, F(¢) is the splitting field of f(x) over F. Let
g(z) =aP~1 +2P~2 4+ ... + 2+ 1. Then g(¢) = 0 clearly. But from the Problem 3, Section
3.10, g(x) is irreducible over rationals. Therefore, [F'(¢) : F] =p — 1. O

8. If n > 1, prove that the splitting field of 2™ — 1 over the field of rational numbers is of
degree ®(n) where ® is the Euler ®-function.

Proof. Let w denote the standard primitive nth root of unity. Since
" —1=(x—w)(z—w?) - (z—w""Hz—-uw")

we know that the splitting field of 2™ — 1 over Q is Q(w). To show that [Q(w) : Q] = ®(n),
we claim that the nth Cyclotomic polynomial ¢, (z) which has degree ®(n), is satisfied by
w and irreducible in Q.

Definition (nth Cyclotimic Polynomial). For any positive integer n, the nth Cyclotomic
polynomial ¢, (z) is given by

Pn(2) = (x —wi)(x — wa) - - (& — ws)

where w1, wo, - -+, ws are primitive nth roots of unity.

Clearly from the definition, ¢, (z) is monic. Further, we know that there are ®(n) many
primitive nth roots of unity for n. Hence, deg¢,(z) = ®(n). Now we prove an useful
Lemma:

Lemma. (A). Let n be a positive integer. Then

" —1= H oa(z).
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(=) Suppose w is a root of ¢4(x) where d | n. That is, w is a primitive dth root of unity.
Let ¢ be the integer such that dg = n. Thus, w” = (w%)? = 1 so that w is a root of z™ — 1.
Now we suppose w is a root of " — 1. Then w is a nth root of unity. Let d denote the
order of w. Equivalently, w? = 1 so that w is a root of ¢4(x). As it is must that d | n and
hence, we conclude that " — 1 and Hdm ¢q(x) share all their roots. As both polynomials

are monic, 2" — 1 =[]y, da(2).

Lemma. (B). For any positive integer n, ¢, (z) € Z[x].

(=) We make induction on n. If n = 1, it is trivial. Suppose we assume the given statement
is true for all k < n. That is, ¢i(z) € Z[z] for all k¥ < n. Now from Lemma (A), we know
that 2" — 1 =[], da(z). Let f(z) = [14, 4<n ¢a(z). By the induction hypothesis, f(z)
is in Z[z] and monic. Assuming z" — 1, f(z) as the polynomials in Q[z], by the division
algorithm we have

2" —1= f(x)q(z) +7(z) = f(z)pn(2),

where ¢q(z),r(z) € Q[z],degr(x) < deg f(x). By the uniqueness of quotient and remainder,
q(z) = ¢n(x) and hence ¢, (x) € Q[z]. Note that both 2™ — 1 and f(x) are monic in Z[x].
Hence, by Gauss’ Lemma, ¢, (x) € Z[x].

Now we prove the irreducibility of ¢, (x) over Z(so that in Q).

Let f(z) € Z[z] be a monic irreducible factor of ¢, (x). As ¢, (z) divides 2™ — 1 in Zlx],
there exists g(x) € Z[z] such that f(z)g(x) = 2™ — 1. Let w be a primitive nth root of
unity, which is a zero of f(z). Let p a prime such that p { n. Thus, (p,n) = 1 and hence,
wP is also a primitive nth root of unity. Hence (wP)n —1 =0 = f(wP)g(wP) so that w? is
a root of either f(x) or g(z).

Suppose f(wP) # 0. This forces g(wP) = 0 and hence, w is a root of g(z”). Since f(z)
is a monic irreducible polynomial in Q[z], it is the minimal polynomial of w in Q[z]. As
Q[z] is a Principal Ideal Domain, f(z) | g(zP) in Q[z]. Moreover, as f(z) is monic, by
Gauss Lemma, f(z) | g(zP) in Z[z|. Say g(zP) = f(x)h(x) for some h(zx) € Z[z]. Let
9(z), f(x), h(z) denote the polynomials in Z,[z] with each coefficients reduced by modulo
p. Hence, g(2P) = h(z)h(z). Consequently, (g(z))? = h(z)f(x). From the fact that Z,[z]
is an Unique Factorization Domain, g(z) and f(z) has a common irreducible factor k(z).
Thus, f(x) = mi(z)k(z) and g(z) = ma(x)k(x) for some my(x), ma(x) € Zy[z]. Conse-
quently, 2" —1 = f(z)g(z) = (k(z))*m1(z)mz(z) in Zy[z] so that 2™ — 1 has a multiple root
in some extension of Z,. As Z, is a field of characteristic p, 2 — 1 must be a polynomial
of form ¢(zP). But since p { n, it is impossible. So this contradicts the fact that ™ — 1 has
multiple root; hence f(wP) = 0. Thus, wP is a root of f(x).

Let ¢ be an arbitrary primitive nth root of unity. It is must that ¢ € (w) so that ¢ = w*
for some positive integer k such that (k,n) = 1. Considering the prime factorization of



k, let k = p’fp? - p’ where each p; { n. Recall that w? is also a root of f(z) for every
prime p { n. So does w* = ¢; ¢ is a root of f(x). Consequently, f(x) and ¢, (z) shares all
their roots. Both being monic in Z[z], f(x) = ¢, (). Therefore, ¢, (x) is irreducible in Zx].

Ultimately, if w denote the standard primitive nth root of unity, ¢,(w) = 0 and with the
fact that deg ¢, (x) = ®(n), we have [Q(w) : Q] = ®(n).
O

9. If F is the field of rational numbers, find necessary and sufficient conditions on a and b
so that the splitting field of 2% + ax + b has degree exactly 3 over F.

Proof. First we prove that f(x) = 2% +az +b must be irreducible in order to have splitting
field of degree 3. Suppose f(x) was reducible, then f(x) has o € Q as a root so that the
degree of the splitting field is less or equal to 2. Thus, f(x) is irreducible in Q. Moreover,
f(x) can have either three of the following;:

e f(z) has multiple roots,
e f(x) has one real and two non-real roots,
e f(x) has three distinct real roots.

First note that f(z) cannot have multiple roots since it is irreducible. Suppose f(z) has
now a complex root w and non-rational real root a. As w ¢ Q(«), the degree of splitting
field must exceed 3, so that a contradiction. So, there is only one choice left, that is, f(x)
has three distinct real roots. i.e.,

f(x) = (z —a)(z = B)(z =),

where «, 8,7 € R — Q are all distinct. Now by Viete’s theorem,

atpf+y=0,
af+ py+ya=a,
afy =b.

For f(x) to have splitting field E of degree 3 over F, it is must that 3,7 € Q(«). From
above, we can find that 8+~ = —a, By = —b/a = a® + a so that the polynomial g(t)

g(t) =t> + at + (a® 4 a) € Q(a)[t]

is the polynomial having § and v as root. Note that 8,7 € Q(«) if and only if the
discriminant a? — 4(a? 4+ a) = —3a? — 4a is a square in Q(a). O

10. Let p be a prime number and let F' = J,, the field of integers mod p.
a) Prove that there is an irreducible polynomial of degree 2 over F.



Proof. Using the fact that f(z) = 2241 is irreducible in J,, p = 4k+3 and g(z) = 2?+z+1
is irreducible in J,, p = 4k + 1, there always exists irreducible polynomial of degree 2 over
F. O

b) Use this polynomial to construct a field with p? elements.

Solution. Taking f(x) defined as

o) z? +1, if p=4k+3
xTr) =
> +r+1, ifp=4dk+1

then J,/(f(z)) is a field with p? elements. O

¢) Prove that any two irreducible polynomials of degree 2 over F' lead to isomorphic fields
with p? elements.

Proof. It is enough to show that any fields of p? elements are isomorphic. Each irreducible
polynomials of degree 2 over F leads to field of p? elements. Denote one of them as
F*, where |F*| = p?. Since every finite field of order p" has F, ~ Z, as its subfield,
flx) = P —x € F,[z] is a polynomial with at most p? elements. But we know that f(z)
has distinct roots and f(a) = 0 for all a € F*, F* is the splitting field of f(z) over F,.
Since splitting fields of a polynomial over a given field must be unique(upto isomorphism),
we are done. O

11. If E is an extension of F' and if f(z) € F[z] and if ¢ is an automorphism of E' leaving
every element of F' fixed, prove that ¢ must take a root of f(x) lying in F into a root of
f(z) in E.

Proof. Let f(z) =ao+ a1z + -+ apx™ € Flz]. Observe that

(f(a))¢p = (ap +ara+---a,a™)e
= ap¢ + (a10)(ad) + - - + (and)(ad)"”
= f(ag)

so that if f(a) = 0 for some root a € E, then 0 = (f(a))¢ = f(a¢). Hence a¢ € E is a
root of f(z) in E. O

12. Prove that F(3/2), where F is the field of rational numbers, has no automorphisms
other than the identity automorphism.



Proof. We first prove that automorphism o in F(3/2) fixes Q = F. It is clear that (1) = 1.
Thus, for a positive integer n,

on)=ocmn-1)=c(l)+o(1)+---+0(l) =n.

~
n times

This also holds for negative integer since 0(—n) = o(—1-n) = o(—1)n = —n. Now consider
the reciprocal %, where m > 0 € Z. Then we have

m m m
m times
)=o)+ e () = (50)
=o|—|+o|{— |+ F+0o|— ) =mc|—
m m m m
m;i?nes

1 1
so that o () = —. Combining the results, we have that o (2) - Thus, o fixes Q.
m m m m

Now, we have that 2 = 0(2) = 0(5’/53) = 0(¥/2)? so that o(¥/2), in the subfield of R, is
must that a(\?’/ﬁ) = {/2. Since any element in F(\B@) is the form of ag + a1 v/2 + as \3/52,

2 2
U(a()‘f'al\?’@"‘ag\?/i ) =a0+a1\3/§+a2\%

so that o = id, an identity automorphism. O

13. Using the result of Problem 11, prove that if the complex number « is a root of the
polynomial p(x) having real coefficients then @, the complex conjugate of «, is also a root

of p(x).

Proof. Let 0 : C — C be a mapping defined by o(a + bi) = a — bi, where a,b € R. As o
fixes the real part of the complex number and with its automorphic nature, o(a) = @ is
also a root of p(x). O

14. Using the result of Problem 11, prove that if m is an integer which is not a perfect
square and if a + Sy/m («, B rational) is the root of a polynomial p(z) having rational
coefficients, then o — §y/m is also a root of p(z).

Proof. Consider the extension field Q(y/m). Since it has degree 2 over Q, every element of
Q(y/m) is the form of x 4+ y/m where z,y € Q. Note that in any field containing Q, its
automorphism must fix the rationals. Let o : Q(y/m) — Q(y/m) defined by o(z 4+ y/m) =
x —yy/m. Clearly o is an automorphism. Therefore, if o + S/m is a root of p(z) € Q|x],

o(a+ Bym) = a— By/m is also a root of p(z). O



15. If F'is the field of real numbers, prove that if ¢ is an automorphism of F', then ¢ leaves
every element of F' fixed.

Proof. Let ¢ be an automorphism of F. Then it must send positive to positive, as for
any z > 0 € R, there exists y such that = y? and hence ¢(x) = ¢(y?) > 0. Thus, ¢
preserves the order(increasing). For the sake of contradiction, if there is x € R such that
¢(x) # x, then, WLOG, we can assume that < ¢(z). Moreover, we can find ¢ € Q such
that < ¢ < ¢(z). But this implies that ¢(z) < ¢(q) = g < ¢(z), which is a contradiction.
Therefore, ¢ must be an identity map. ]

16. a) Find all real quaternions ¢ = ag + a1i + agj + ask satisfying t2 = —1.

Proof. By simple calculation,

t2= -1 < (a2 — a? — a3 — a2) + (2a0a1)i + (2apaz)j + (2apaz)k = —1
<= ay=0, a}+a3+a3=1.
Hence, t = ag + a1i + a2j + agk satisfies t> = —1 if and only if ag = O,a% —HL% +a§ =1. 01

b) For a t as in part a) prove we can find a real quaternion s such that sts~! = .

Proof. Let t = —i and s = j. Then j(—i)(—j) = i. O



