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Supplementary Problems.

1. Let R be a commutative ring; an ideal P of R is said to be a prime ideal of R if ab € P,
a,b € R implies that a € P or b € P. Prove that P is a prime ideal of R if and only if R/P
is an integral domain.

Proof. Note that
[abe P = a€ Porbe P|
is equivalent to
[(a+P)(b+P)=ab+P=P = a+P=Porb+ P =P].
Therefore, P is a prime ideal if and only if R/P is an integral domain. O

2. Let R be a commutative ring with unit element; prove that every maximal ideal of R is
a prime ideal.

Proof. Let M be a maximal ideal of R. Then R/M is a field, and hence an integral domain.
Therefore, by Problem 1, M is a prime ideal. O

3. Give an example of a ring in which some prime ideal is not a maximal ideal.
Solution. The trivial ideal (0) is a prime ideal, but not maximal. O

4. If R is a finite commutative ring (i.e., has only a finite number of elements) with unit
element, prove that every prime ideal of R is a maximal ideal of R.

Proof. Let P be a prime ideal of R. Then R/P is an integral domain. Since R is finite,
R/P is also finite. Since every finite integral domain is a field, R/P is a field. Now it
follows that P is maximal. O

5. If F is a field, prove that F[z] is isomorphic to F[t].



Proof. Let ¢ : F[x] — F[t] be a mapping defined as

o(f(x)) =¢lap + a1z + -+ apx™) = ap + a1t + - - - axt" = f(t).
Clearly it is an onto isomorphism from F[z]| to Ft]. O
6. Find all the automorphisms o of F[x] with the property that o(f) = f for every f € F.

Proof. Suppose o is an automorphism of F[z] such that o(f) = f for every f € F. Then
o is determined by the image of x. That is, the polynomial o(z). Since Flo(z)] C Flz].
For this mapping to be surjective, o(x) cannot have degree of larger than 2. So, we are
left with the case o(z) = ax + b where a # 0,b € F. This is surjective, as g(z) = (z —b)/a
will do the inverse map and hence, F[o(z)] = F[z]. Therefore, o’s mapping z to ax + b,
a # 0,b € F are the automorphisms of F[z]. O

7. If R is a commutative ring, let N = {z € R : 2" = 0 for some integer n}. Prove
a) N is an ideal of R.

Proof. This is exactly the lemma introduced in Problem 7, Section 3.11. O
b) In R = R/N if ™ = 0 for some m then Z = 0.

Proof. Suppose ™ = 0 for some m. Equivalently, 2™ € N. Now by the definition of IV,
(z™)™ = 0 for some n. Consequently, (z™)" = ™" = 0 which implies that z € N <=
T =0. O

8. Let R be a commutative ring and suppose that A is an ideal of R. Let N(A) = {z €

R : " € A for some integer n}. Prove
a) N(A) is an ideal of R which contains A.

Proof. N(A) clearly contains A. Let x,y € N(A). Suppose m and n are the integers
satisfying 2™, y” € A. As A being an ideal of R,

m+4n o= m+n k, m4+n—k m-+n m-+n—1 m—1, n+1
(x+y)™tr =" L )Ty =y +ay +o 2™y
k=0

+ xmyn + $m+1yn71 4t $m+n71y + mern)
= y"y" 4+ 2y Dy 4+ (@ )y 4 2y
+xm(xyn—1) 4. Jrxm(xn—ly) +xmxn c A

so that = +y € N(A). Also, (—z)?™ = 2?™ = ™2™ € A so that —x € N(A). Further, for
any r € R, (raz)™ = r™z™ € A. Thus, N(A) is an ideal of R. O

b) N(N(A)) = N(A).



Proof. Clearly N(A) C N(N(A)). Suppose x € N(N(A)). Then z" € N(A) for some n.
Further, (z™)™ € A for some m. Since 2™ = (2")™, x € N(A). Therefore, N(N(A)) C
N(A) so that N(N(A)) = N(A). O

9. If n is an integer, let J,, be the ring of integers mod n. Describe N for J,, in terms of n.

Proof. Let the prime factorization of n be n = p{*p5?---p*. We claim that N(A) =
(p1p2 - - px). Suppose z € (p1p2 - pr). Then z = bpips - - - pr. Let a = max{ay,az,---ay}.
Then z% = (bpips - - pr)® and since n | (bpip2---pr)* n | z* <= z2% =0 in J,. Now
conversely, assume that x € N(A). That is, 2™ = 0 for some integer m. If x = 0, it is
done. If x # 0, assume that p1pe---pg 1 x for the sake of contradiction. Consequently,
there exists a prime p; such that p; 2. Hence, p; 1 ™ for all positive integer m and hence
n{a™, ™ # 0. But this is a contradiction. Hence it is must that pips---pg |  and
hence,x € (p1p2 - pi)- O

10. If A and B are ideals in a ring R such that AN B = (0), prove that for every a € A,
be B, ab=0.

Proof. Note that ab € AN B, as A and B are ideals of R. Therefore, ab = 0. O

11. If R is aring, let Z(R) = {z € R: yz = zy ally € R}. Prove that Z(R) is a subring
of R.

Proof. Choose a,b € Z(R). Then (a + (=b))y = ay + (=b)y = ya + y(—b) = y(a + (=b))
for all y € R. Hence a+b € Z(R). Also, (ab)y = a(by) = a(yb) = (ay)b = (ya)b = y(ab)
so that xy € Z(R). These shows that Z(R) is a subring of R. O

12. If R is a division ring, prove that Z(R) is a field.

Proof. Tt is trivial that Z(R) is commutative. Hence Z(R) is a commutative division ring,
and hence a field. O]

13. Find a polynomial of degree 3 irreducible over the ring of integers, J3, mod 3. Use it
to construct a field having 27 elements.

Solution. Let p(x) = 2 — 2 — 1. Tt is clearly an irreducible polynomial of degree 3 in .J3.
Consequently, Js[x]/(p(z)) is a field, with 27 elements. O

14. Construct a field having 625 elements.

Solution. Let p(z) = 2° —x — 1. If it had a quadratic factor f(z), then Js[z]/(f(z)) =~ J25
so that

w=w+1, w=w?=w+1)°=wS+1=w+2,



which is a contradiction. Therefore, p(z) is irreducible in J5. Now consider the field
Js[x]/(p(z)). Then it is a field, with 5* = 625 elements. O

15. If F'is a field and p(z) € F'[z], prove that in the ring

N (Nilradical of R) is (0) if and only if p(z) is not divisible by the square of any polynomial.

Proof. Suppose N = (0). For the sake of contradiction, assume that p(z) is divisible by
some square of a non-costant polynomial #(z). Then ¢(x)2d(x) = p(z) for some d(x) € F[z].
Note that t(x)d(x) is not in (p(z)). But since (t(x)d(z))? € (p(z)), t(z)d(x) € N which
contradicts the fact that N = (0).

Conversely, assume that p(x) is not divisible by the square of any polynomial. With
the fact that F[z] is an UFD, p(z) can be expressed as product of unique irreducible
polynomials(upto associates), which are all distinct. Consider ¢(z) which is not in (p(x)).
Then t(x) must be missing an irreducible factor of p(z). Consequently, ¢(x)™ cannot contain
that missing factor for any n. Thus, t(z)" € (p(z)) for all n. Therefore, N = (0). O

16. Prove that the polynomials f(x) = 1 + = + 2% + 2% is not irreducible over any field F.

Proof. Tt it easy to see that f(z) =1+ 2+ 2%(x + 1) = (23 + 1)(z + 1). Therefore, f(z) is
not irreducible over any field F'. O

17. Prove that the polynomial f(x) = z* + 2z + 2 is irreducible over the field of rational
numbers.

Proof. Apply Eisenstein’s Criterion. Let a; denote the coefficients of 2. Then 2 { ay4,2 |
a;,i < 3 but 22 =4 ag = 2. Thus, given f(x) is irreducible over Q. O

18. Prove that if F' is a finite field, its characteristic must be a prime number p and F
contains p” elements for some integer. Prove further that if a € F then a?" = a.

Proof. Let m denote the number of elements in F'. Then viewing F' as a additive group, m-
1 = 0. Hence F must be a field of finite characteristic, with p, a prime as its characteristic.
Suppose m has another prime factor g other than p. Then by Cauchy’s theorem, there is
an element z of order q. Note that (p,q) = 1. Hence, pr + gs = 1 for some integers r and
s. Consequently z(pr + gs) = x <= z = 0, which is a contradiction. Hence, m = p" for
some n. Now viewing F* as a multiplicative group, a?" ! =1 so that a?" = a. O

19. Prove that any nonzero ideal in the Gaussian integers J[i] must contain some positive
integers.



Proof. Let A be a nonzero ideal of J[i]. Say, a + bi € A, where a and b are not both zero.
Then (a—bi)(a+bi) = a®>+b% € A so that A contains a positive integer. Hence proved. [

20. Prove that if R is a ring in which a* = a for every a € R then R must be commutative.

Proof. Note that (—z)* = x = —x so that 22 = 0 for all x € R. So expanding (z + 22)?,
we have

(x4 2°)? =2t + 223 + 2? =2 + 22
This shows that elements of the form x + 22 is idempotent. We know that any idempotent
elements are central elements. That is, they lie in Z(R). Let = a4+ b. Then
alz +22) = (x+1%)a <= a*b+alb+b*) =ba® + (b+b*)a < a®b=ba®>. (1)

Since b was arbitrary, elements of the form z? also lies in Z(R). Since Z(R) being the
subring of R, a = (a+a?) —a? is also in Z(R). Now a was arbitrary, and hence, Z(R) = R.
Therefore, R is commutative. ]

21. Let R and R’ be rings and ¢ a mapping from R into R’ satisfying
a) ¢(x +y) = o(z) + ¢(y) for every x,y € R.

b) ¢(ay) = d(2)d(y) or d(y)d(x).
Prove that for all a,b € R, ¢(ab) = ¢(a)p(b) or that, for all a,b € R, ¢p(ab) = ¢(b)p(a).

Proof. Let a € R. We define W, and U, as follows:

Wo={z € R: ¢(azx) = ¢(a)p(x)}, Ua={z € R: ¢(ax) = ¢(x)p(a)}.

It is easy to see that both W, and U, are additive subgroups of R and R = W, U U,,
by the definition of ¢. Since no group can be written as union of two subgroup, either
R =W, or R = U,. This is equivalent to ¢(ab) = ¢(a)p(b) either ¢(ab) = ¢(b)p(a), for
every a,b € R. O

22. Let R be a ring with a unit element 1, in which (ab)? = a?b* for all a,b € R. Prove
that R must be commutative.

Proof. We compute ((1+4a)b)?, (a(1+5))? and ((1 —a)(1—1b))? in two ways each. Observe
that

(14 a)b)? = (1 +a)*? < bab = ab?,
= a?(1+b)? < aba = a®b,

((a(1+10))?
and
(1—a)(1-0)?=(1-a)?*1—-0b)? < ab— ab® — a*b = ba = bab — aba
< ab = ba.
Therefore, R is commutative. O



23. Give an example of a noncommutative ring (of course, without 1) in which (ab)? = a?b?
for all elements a and b.

Proof. Consider the ring R defined as:
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where
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so that (ab)? = a?b%. But R is not commutative as
L0y (1LY (111 0) (1 1) (10
0 0J\0o 0/ \0 O 0 0/ \o 0/)\0 0/

24. a) Let R be a ring with unit element 1 such that (ab)? = (ba)? for all a,b € R. If in R,
2z = 0 implies x = 0, prove that R must be commutative.

O

Proof. Similarly with Problem 22, we compute ((1+a)b)?, (a(1+0b))? and ((1—a)(1—b))?
in two ways each. Observe that

(14 a)b)? = (b(1 +a))* < ab® = ba,
((a(1+0)? = (1 +b)a)? < a?b = bd?,

and

(1 —=a)1=0))?=(1-0)(1—a))? < 2ab— a®b— ab® = 2ba — b*a — ba*
<= 2(ab—ba) =0 = ab = ba.

Therefore, R is commutative. ]

b) Show that the result of a) may be false if 22 = 0 for some x # 0.



Proof. Consider the ring R defined as:

a b c
R= 0 a d||a,b,ec,deZs
0 0 a
P q T x Yy z
It consists of the unit element I3. Further, supposea= ({0 p s|]andb=|0 = w
0 0 p 0 0 =z
Then
pr pytazr pztqutrz\®  [((pr)® 0 (py+qx)(pw + sz)
(ab)?=10 px pw + sz = 0 (px)? 0 :
0 0 px 0 0 (pz)?
pr opy+aqr prtsy+ra\®  [(pr) 0 (py+qz)(pw + sx)
(ba)*=10 P pw + sx = 0 (pr)? 0 ,

0 0 T 0 0 (pz)?
so that (ab)? = (ba)?. We also see that 213 = 0 but I3 # 0. Moreover, R is not commutative
since
010 010 0 0 1 010 010
0 01 0 00]=0#(0 0 0)=|000 0 01
0 0O 0 00 0 0O 0 00 0 0 0
O

c) Even if 22 = 0 implies z = 0 in R, show that the result of a) may be false if R does not
have a unit element.

Proof. Consider the ring R defined as:

0
R = 0 a,b,c € Zs
0

o O Q

b
c
0
This ring has no unit element, and 2x = 0 holds only for x = 0. Moreover, power of
every product a and b is zero. That is, (ab)? = 0 = (ba)? for all a,b € R. But R is not

commutative since

010 0 01 0 0 2 0 01 010
0 0 2 00 2]=(00O0]#0=1{0 0 2 00 2
0 00 0 00 0 00 0 00 0 00



25. Let R be a ring in which 2" = 0 implies x = 0. If (ab)? = a?b? for all a,b € R, prove
that R is commutative.

Proof. We shall compute (a(a + b))? and ((a + b)b)? in two different ways each. Observe
that

(a(a+0))* = a*(a +b)* <= aba® = a*ba,
((a + b)b)? = (a +b)*b? <= b%ab = bab?,
so that
(ab—ba)® =0 = ab = ba.
Therefore, R is commutative. ]

26. Let R be a ring in which 2" = 0 implies z = 0. If (ab)? = (ba)? for all a,b € R, prove
that R must be commutative.

Proof. We can get (ab—ba)® = 0 which leads to ab = ba. Refer ”Commutativity Theorems
Examples in Search of Algorithms”, John J Wavrik, Dept of Math Univ of Calif - San
Diego. O

27. Let p1,p2, -+, pr be distinct primes, and let n = pi1ps - - - pg. If R is the ring of integers
modulo 7, show that there are exactly 2* elements a in R such that a? = a.

Proof. By the Chinese Remainder Theorem,
R=17,~7, X Zp, X -+ X L.

Note that for each Z,,, there are exactly 2 elements in Z,, satisfying a’® = a. Therefore,
there are total of k times of 2, 2¥ elements in R satisfying a? = a. O

28. Construct a polynomial g(x) # 0 with integer coefficients which has no rational roots
but is such that for any prime p we can solve the congruence ¢(z) = 0 mod p in the integers.

Proof. From the theory of Quadratic residues, > = —1 mod p has solution iff p = 1 mod
4. Also, 22 = 2 mod p has solution iff p = 1,7 mod 8 and 22> = —2 mod p has solution
iff p = 1,3 mod 8. Therefore, for every prime p, it must have either —1,2 or,—2 as its
quadratic residue. Thus, ¢(z) = (2% + 1)(2% + 2)(2? — 2) is a polynomial with integer
coefficients which has no rational roots, but has a root in Z,. ]



