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Problems in Section 3.8.

1. Find all the units in J [i].

Proof. Since J [i] is an Euclidean ring, a = p + qi ∈ J [i] is an unit if and only if d(a) =
d(1). Equivalently, d(a) = d(1) ⇐⇒ p2 + q2 = 1 so that there are 4 units, namely:
1,−1, i,−i.

2. If a + bi is not a unit of J [i] prove that a2 + b2 > 1.

Proof. It follows directly from Problem 1.

3. Find the greatest common divisor in J [i] of
a) 3 + 4i and 4− 3i.

Solution. Note that

3 + 4i = i(4− 3i)

so that the greatest common divisor of 3 + 4i and 4− 3i is 3 + 4i.

b) 11 + 7i and 18− i.

Solution. Note that

18− i = 1(11 + 7i) + (7− 8i),

11 + 7i = i(7− 8i) + 3,

7− 8i = (2− 3i)3 + (1 + i),

3 = (1− 2i)(1 + i) + i,

1 + i = 1 · i + 1,

i = i · 1

so that the greatest common divisor of 11 + 7i and 18− i is 1.
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4. Prove that if p is a prime number of the form 4n + 3, then there is no x such that
x2 ≡ −1 mod p.

Proof. Suppose there is x satisfying x2 ≡ −1 mod p. We know that by Fermat’s Little
Theorem, xp ≡ x ⇐⇒ x4n+3 ≡ x mod p. As x4 ≡ 1 mod p, x3 ≡ x mod p so that x2 ≡ 1
mod p, which is a contradiction. Therefore, there is no prime number of form 4n + 3 with
x satisfying x2 ≡ −1 mod p.

5. Prove that no prime of the form 4n + 3 can be written as a2 + b2 where a and b are
integers.

Proof. In fact, there is no integer of form 4n+ 3 can be written as sum of two squares. We
divide into four cases:

• (Case 1) a and b are even. We have a = 2k, b = 2l so that a2 + b2 = 4(k2 + l2) ≡
0 (mod 4).

• (Case 2) a and b are odd. We have a = 2k + 1, b = 2l + 1 so that a2 + b2 =
4(k2 + k + l2 + l) + 2 ≡ 2 (mod 4).

• (Case 3) either a or b is odd: We have a = 2k, b = 2l + 1 so that a2 + b2 = 4(k2 +
l2 + l) + 1 ≡ 1 (mod 4).

So in either cases, a2 + b2 6≡ 3 (mod 4).

6. Prove that there is an infinite number of primes of the form 4n + 3.

Proof. Suppose there are only finitely many primes of the form 4n + 3 p1 = 3, p2, · · · , pk.
Consider q = 4p2p3 · · · pk + 3. Note that q ≡ 3 (mod 4). But no pi’s divide q so that q
admits only primes of the form 4n + 1 as a divisor. But note that product of integers of
form 4n + 1 is again the same, so that is a contradiction that q is an integer of the form
4n + 3. Hence there must be infinite number of primes of the form 4n + 3.

7. Prove that there exists an infinite number of primes of the form 4n + 1.

Proof. Suppose there are only finitely many primes of the form 4n+ 1 p1, p2, · · · , pk. Con-
sider q = (2p1p2 · · · pk)2+1. Note that for any odd prime p dividing q is not a form of 4n+3.
For such p, 2p1p2 · · · pk is a solution for the congruence equation x2 ≡ −1 (mod p). But
this forces that p is not a form of 4n+ 3 so that p = pi for some i, which is a contradiction.
Hence there must be an infinite number of primes of the form 4n + 1.

8. Determine all the prime elements in J [i].
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Solution. We prove the following: a + bi ∈ J [i] is prime if and only if a2 + b2 is prime
in J . Suppose a + bi is a prime in J [i]. Note that a2 + b2 = (a + bi)(a − bi). If a2 + b2

is a prime, then we are done. If not, since J [i] is an Unique Factorization Domain, the
two prime factors of a2 + b2 must be associates of a + bi and a − bi respectively. Since
a + bi being an associate with a prime element in J , ab = 0. Conversely, assume that
a2 + b2 is a (positive integer) prime in J . Suppose a+ bi = (c+ di)(e+ fi). We know that
a2 + b2 = (c2 + d2)(e2 + f2). Thus, either c2 + d2 = 1 or e2 + f2 = 1 so that, equivalently,
either c + di or e + fi is an unit in J [i]. This proves that a + bi is a prime(irreducible) in
J [i].

9. Determine all positive integers which can be written as a sum of two squares(of integers).

Proof. We claim that a positive integer can be written as a sum of two squares if and only
if its prime divisors of form 4k+ 3 occur within even powers. Let n = m2r where m2 is the
largest square divisor so that r is square free. Suppose r = 1. Then n = m2 + 02, so we are
done. Thus we assume that r > 1. If r = 2, n = 2m2 = m2 +m2. From our assumption, if
r > 2, r has prime divisors of forms 4k + 1 only. Thus, r is expressible as product of sum
of integers of two squares of integers. But since product of sum of two squares is again a
sum of two squares, n is again a product of sum of two squares so that, in ultimately, n is
the sum of two squares.
Conversely, suppose that n can be written as a sum of two squares, that is, n = m2r =
a2 + b2. Let (a, b) = d. Then a0d = a, b0d = b where (a0, b0) = 1. Thus, m2r = d2(a20 + b20).
Since r is square free, d | m so that dm′ = m =⇒ (m′)2r = a20 + b20. Now for the sake of
contradiction, assume that r has a prime divisor p of form 4k + 3. Then

a20 + b20 ≡ 0 (mod p) ⇐⇒ a20 ≡ −b20 (mod p).

If p - a0, p - b0 otherwise (a0, b0) 6= 1. Thus, (a0, p) = (b0, p) = 1. Now by Fermat’s Little
Theorem,

ap−10 ≡ 1, bp−10 ≡ 1 (mod p),

=⇒ a4k+2
0 ≡ b4k+2

0 (mod p),

=⇒ a4k0 ≡ b4k0 (−1) (mod p),

=⇒ 1 ≡ −1 (mod p),

which is clearly a contradiction. Hence, proved.
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