Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 20, 2020

Problems in Section 3.8.

1. Find all the units in J[i].

Proof. Since J[i] is an Euclidean ring, $a = p + qi \in J[i]$ is an unit if and only if d(a) = d(1). Equivalently, $d(a) = d(1) \iff p^2 + q^2 = 1$ so that there are 4 units, namely: 1, -1, i, -i.

2. If a + bi is not a unit of J[i] prove that $a^2 + b^2 > 1$.

Proof. It follows directly from Problem 1.

3. Find the greatest common divisor in J[i] of a) 3 + 4i and 4 - 3i.

Solution. Note that

$$3+4i=i(4-3i)$$

so that the greatest common divisor of 3 + 4i and 4 - 3i is 3 + 4i.

b) 11 + 7i and 18 - i.

Solution. Note that

$$18 - i = 1(11 + 7i) + (7 - 8i),$$

$$11 + 7i = i(7 - 8i) + 3,$$

$$7 - 8i = (2 - 3i)3 + (1 + i),$$

$$3 = (1 - 2i)(1 + i) + i,$$

$$1 + i = 1 \cdot i + 1,$$

$$i = i \cdot 1$$

so that the greatest common divisor of 11 + 7i and 18 - i is 1.

4. Prove that if p is a prime number of the form 4n + 3, then there is no x such that $x^2 \equiv -1 \mod p$.

Proof. Suppose there is x satisfying $x^2 \equiv -1 \mod p$. We know that by Fermat's Little Theorem, $x^p \equiv x \iff x^{4n+3} \equiv x \mod p$. As $x^4 \equiv 1 \mod p$, $x^3 \equiv x \mod p$ so that $x^2 \equiv 1 \mod p$, which is a contradiction. Therefore, there is no prime number of form 4n + 3 with x satisfying $x^2 \equiv -1 \mod p$.

5. Prove that no prime of the form 4n + 3 can be written as $a^2 + b^2$ where a and b are integers.

Proof. In fact, there is no integer of form 4n + 3 can be written as sum of two squares. We divide into four cases:

- (Case 1) a and b are even. We have a = 2k, b = 2l so that $a^2 + b^2 = 4(k^2 + l^2) \equiv 0 \pmod{4}$.
- (Case 2) a and b are odd. We have a = 2k + 1, b = 2l + 1 so that $a^2 + b^2 = 4(k^2 + k + l^2 + l) + 2 \equiv 2 \pmod{4}$.
- (Case 3) either *a* or *b* is odd: We have a = 2k, b = 2l + 1 so that $a^2 + b^2 = 4(k^2 + l^2 + l) + 1 \equiv 1 \pmod{4}$.

So in either cases, $a^2 + b^2 \not\equiv 3 \pmod{4}$.

6. Prove that there is an infinite number of primes of the form 4n + 3.

Proof. Suppose there are only finitely many primes of the form 4n + 3 $p_1 = 3, p_2, \dots, p_k$. Consider $q = 4p_2p_3 \cdots p_k + 3$. Note that $q \equiv 3 \pmod{4}$. But no p_i 's divide q so that q admits only primes of the form 4n + 1 as a divisor. But note that product of integers of form 4n + 1 is again the same, so that is a contradiction that q is an integer of the form 4n + 3. Hence there must be infinite number of primes of the form 4n + 3.

7. Prove that there exists an infinite number of primes of the form 4n + 1.

Proof. Suppose there are only finitely many primes of the form 4n + 1 p_1, p_2, \dots, p_k . Consider $q = (2p_1p_2 \cdots p_k)^2 + 1$. Note that for any odd prime p dividing q is not a form of 4n+3. For such p, $2p_1p_2 \cdots p_k$ is a solution for the congruence equation $x^2 \equiv -1 \pmod{p}$. But this forces that p is not a form of 4n+3 so that $p = p_i$ for some i, which is a contradiction. Hence there must be an infinite number of primes of the form 4n+1.

8. Determine all the prime elements in J[i].

Solution. We prove the following: $a + bi \in J[i]$ is prime if and only if $a^2 + b^2$ is prime in J. Suppose a + bi is a prime in J[i]. Note that $a^2 + b^2 = (a + bi)(a - bi)$. If $a^2 + b^2$ is a prime, then we are done. If not, since J[i] is an Unique Factorization Domain, the two prime factors of $a^2 + b^2$ must be associates of a + bi and a - bi respectively. Since a + bi being an associate with a prime element in J, ab = 0. Conversely, assume that $a^2 + b^2$ is a (positive integer) prime in J. Suppose a + bi = (c + di)(e + fi). We know that $a^2 + b^2 = (c^2 + d^2)(e^2 + f^2)$. Thus, either $c^2 + d^2 = 1$ or $e^2 + f^2 = 1$ so that, equivalently, either c + di or e + fi is an unit in J[i]. This proves that a + bi is a prime(irreducible) in J[i].

9. Determine all positive integers which can be written as a sum of two squares (of integers).

Proof. We claim that a positive integer can be written as a sum of two squares if and only if its prime divisors of form 4k + 3 occur within even powers. Let $n = m^2 r$ where m^2 is the largest square divisor so that r is square free. Suppose r = 1. Then $n = m^2 + 0^2$, so we are done. Thus we assume that r > 1. If r = 2, $n = 2m^2 = m^2 + m^2$. From our assumption, if r > 2, r has prime divisors of forms 4k + 1 only. Thus, r is expressible as product of sum of integers of two squares of integers. But since product of sum of two squares is again a sum of two squares, n is again a product of sum of two squares so that, in ultimately, n is the sum of two squares.

Conversely, suppose that n can be written as a sum of two squares, that is, $n = m^2 r = a^2 + b^2$. Let (a, b) = d. Then $a_0d = a, b_0d = b$ where $(a_0, b_0) = 1$. Thus, $m^2r = d^2(a_0^2 + b_0^2)$. Since r is square free, $d \mid m$ so that $dm' = m \implies (m')^2 r = a_0^2 + b_0^2$. Now for the sake of contradiction, assume that r has a prime divisor p of form 4k + 3. Then

$$a_0^2 + b_0^2 \equiv 0 \pmod{p} \iff a_0^2 \equiv -b_0^2 \pmod{p}$$

If $p \nmid a_0, p \nmid b_0$ otherwise $(a_0, b_0) \neq 1$. Thus, $(a_0, p) = (b_0, p) = 1$. Now by Fermat's Little Theorem,

$$a_0^{p-1} \equiv 1, b_0^{p-1} \equiv 1 \pmod{p}$$
$$\implies a_0^{4k+2} \equiv b_0^{4k+2} \pmod{p},$$
$$\implies a_0^{4k} \equiv b_0^{4k} (-1) \pmod{p},$$
$$\implies 1 \equiv -1 \pmod{p},$$

which is clearly a contradiction. Hence, proved.