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Problems in Section 3.8.

1. Find all the units in Ji].

Proof. Since J[i] is an Euclidean ring, a = p + ¢i € J[i] is an unit if and only if d(a) =
d(1). Equivalently, d(a) = d(1) <= p? + ¢*> = 1 so that there are 4 units, namely:
1,—1,4, —i. 0

2. If a + bi is not a unit of J[i] prove that a? + b > 1.
Proof. 1t follows directly from Problem 1. O

3. Find the greatest common divisor in J[i] of
a) 3+ 4i and 4 — 3i.

Solution. Note that
3+ 4i=i(4 — 3i)
so that the greatest common divisor of 3 + 47 and 4 — 3¢ is 3 + 4. O
b) 11 + 7 and 18 — 1.
Solution. Note that

18 — i = 1(11 + 7i) + (7 — 8i),
11+ 7i = i(7 — 8i) + 3,
7—8i=(2—30)3+ (1+1),
3=(1-2i)(1+414)+1,
l+i=1-i+1,

1=1-1

so that the greatest common divisor of 11 + 77 and 18 — ¢ is 1. O



4. Prove that if p is a prime number of the form 4n + 3, then there is no = such that
22 = —1 mod p.

Proof. Suppose there is z satisfying 22 = —1 mod p. We know that by Fermat’s Little
Theorem, 2P = ¢ <= 2*""3 =2 mod p. As 2* =1 mod p, 23 = z mod p so that 22 =

mod p, which is a contradiction. Therefore, there is no prime number of form 4n + 3 with
x satisfying 22 = —1 mod p. O

5. Prove that no prime of the form 4n + 3 can be written as a® + b where a and b are
integers.

Proof. In fact, there is no integer of form 4n + 3 can be written as sum of two squares. We
divide into four cases:

e (Case 1) a and b are even. We have a = 2k,b = 2[ so that a® + b? = 4(k* + [?) =
0 (mod 4).

e (Case 2) a and b are odd. We have a = 2k + 1,b = 2] + 1 so that a® + b? =
42+ k+12+1)+2=2 (mod 4).

e (Case 3) either a or b is odd: We have a = 2k,b = 2] + 1 so that a? + b? = 4(k* +
2410)+1=1 (mod 4).

So in either cases, a? + b? # 3 (mod 4). O
6. Prove that there is an infinite number of primes of the form 4n + 3.

Proof. Suppose there are only finitely many primes of the form 4n 4+ 3 p1 = 3,ps9, -+ , pg.
Consider ¢ = 4paps - - pr, + 3. Note that ¢ = 3 (mod 4). But no p;’s divide ¢ so that g
admits only primes of the form 4n + 1 as a divisor. But note that product of integers of
form 4n 4 1 is again the same, so that is a contradiction that ¢ is an integer of the form
4n + 3. Hence there must be infinite number of primes of the form 4n + 3. O

7. Prove that there exists an infinite number of primes of the form 4n + 1.

Proof. Suppose there are only finitely many primes of the form 4n+ 1 p1,ps, -+, pr. Con-
sider ¢ = (2p1p2 - - - pr)?+1. Note that for any odd prime p dividing ¢ is not a form of 4n+3.

For such p, 2p1ps - - - px is a solution for the congruence equation 22 = —1 (mod p). But
this forces that p is not a form of 4n + 3 so that p = p; for some ¢, which is a contradiction.
Hence there must be an infinite number of primes of the form 4n + 1. O

8. Determine all the prime elements in J[i].



Solution. We prove the following: a + bi € J[i] is prime if and only if a® 4 b? is prime
in J. Suppose a + bi is a prime in J[i]. Note that a® 4+ b> = (a + bi)(a — bi). If a® + b?
is a prime, then we are done. If not, since J[i] is an Unique Factorization Domain, the
two prime factors of a® + b®> must be associates of a + bi and a — bi respectively. Since
a + bi being an associate with a prime element in J, ab = 0. Conversely, assume that
a®+b? is a (positive integer) prime in J. Suppose a + bi = (c+ di)(e + fi). We know that
a? +b? = (2 +d?)(e? + f?). Thus, either ¢> +d? = 1 or €2 + f? = 1 so that, equivalently,
either ¢+ di or e + fi is an unit in J[i]. This proves that a + bi is a prime(irreducible) in
J[i]. O

9. Determine all positive integers which can be written as a sum of two squares(of integers).

Proof. We claim that a positive integer can be written as a sum of two squares if and only
if its prime divisors of form 4k 4 3 occur within even powers. Let n = m?r where m? is the
largest square divisor so that 7 is square free. Suppose r = 1. Then n = m? 4 02, so we are
done. Thus we assume that r > 1. If » = 2, n = 2m? = m? + m?. From our assumption, if
r > 2, r has prime divisors of forms 4k + 1 only. Thus, r is expressible as product of sum
of integers of two squares of integers. But since product of sum of two squares is again a
sum of two squares, n is again a product of sum of two squares so that, in ultimately, n is
the sum of two squares.

Conversely, suppose that n can be written as a sum of two squares, that is, n = m?r =
a?+b?. Let (a,b) = d. Then agd = a,bod = b where (ag,by) = 1. Thus, m?r = d?(a2 + b2).
Since 7 is square free, d | m so that dm’ = m = (m’)?*r = a2 + b3. Now for the sake of
contradiction, assume that r has a prime divisor p of form 4k 4 3. Then

a3 + b2 =0 (mod p) <= a2 = —b3 (mod p).

If ptag,ptby otherwise (ag,bp) # 1. Thus, (ag,p) = (by,p) = 1. Now by Fermat’s Little
Theorem,

ab ' =1,007" =1 (mod p),
= aék+2 = bék”
= ag" = 0y°(~1) (mod p),

— 1= -1 (mod p),

(mod p),

which is clearly a contradiction. Hence, proved. O



