Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 16, 2020

Problems in Section 3.7.

1. In a commutative ring with unit element prove that the relation a is an associate of b is an equivalence relation.

Proof. (Reflexive) For $a \in R$, $a = 1 \cdot a$ so that $a \sim a$.

(Symmetry) For $a, b \in R$, if $a \sim b \iff b = ua$ for some unit u, uk = 1 for some unit $k \in R$ and consequently, kb = kua = (uk)a = a. Hence, $b \sim a$. So from now on, we can make use of the term u^{-1} for the inverse of unit u in R.

(Transitive) For $a, b, c \in R$, if $a \sim b$ and $b \in c$ then b = ua, c = kb for some units u, k in R. Consequently, c = kb = k(ua) = (ku)a. Note that product of unit is still an unit, so that $a \sim c$.

2. In a Euclidean ring prove that any two greatest common divisors of a and b are associates.

Proof. Apply Lemma 3.7.2. Then the result is straightforward.

3. Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a unit is that d(a) = d(1).

Proof. Suppose a is an unit in R. Then ab = 1 for some $b \in R$. Hence, $d(a) \le d(ab) = d(1)$. Since $d(1) \le d(1 \cdot a) = d(a)$, d(1) = d(a). Conversely, if d(a) = d(1). Suppose a is not an unit. Then by Lemma 3.7.3, $d(1) < d(1 \cdot a) = d(a)$, which is a contradiction. Hence, a must be an unit.

4. Prove that in a Euclidean ring (a, b) can be found as follows:

$$b = q_0 a + r_1$$
, where $d(r_1) < d(a)$
 $a = q_1 r_1 + r_2$, where $d(r_2) < d(r_1)$
 $r_1 = q_2 r_2 + r_3$, where $d(r_3) < d(r_3)$
 \vdots \vdots \vdots
 $r_{n-1} = q_n r_n$

and $r_n = (a, b)$.

Proof. We claim that (a,b) equals (r_1,a) (upto associates). Note that $r_1 = b - q_0 a$ and $(a,b) \mid b - q_0 a$ so that $(a,b) \mid r_1$. It is also trivial that $(a,b) \mid a$, and hence $(a,b) \mid (r_1,a)$. Conversely, $(r_1,a) \mid r_1,a$ and hence $(r_1,a) \mid (q_0 a + r) = b$ so that $(r_1,a) \mid (a,b)$. Hence $(a,b) = (r_1,a)$ upto associates. We repeat this process until one of the elements in the tuple (r_k, r_{k-1}) terminates with 0(this is always the case since d(a) is finite). So we obtain

$$(a,b)=(r_1,a)=(r_2,r_1)=\cdots=(r_{n-1},r_{n-2})=(r_n,r_{n-1})=(0,r_n)=r_n$$
 so that $r_n=(a,b)$.

5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.

Proof. If a is an unit of R and $a \in U$, then $a^{-1}a = 1 \in U$ so that U = R.

6. Prove that the units in a commutative ring with a unit element form an abelian group.

Proof. Let U be the set of all units in commutative ring R. Then clearly U is closed under associative product. The unit element 1 is the multiplicative identity of U. Let $u \in U$ and consider its multiplicative inverse u^{-1} . Since $u^{-1}u = 1$, u^{-1} is also an unit so that $u^{-1} \in R$. Thus, U is a commutative multiplicative group in R.

7. Given two elements a, b in the Euclidean ring R their least common multiple $c \in R$ is an element in R such that $a \mid c$ and $b \mid c$ and such that whenever $a \mid x$ and $b \mid x$ for $x \in R$ then $c \mid x$. Prove that any two elements in the Euclidean ring R have a least common multiple of R.

Proof. Let us define a set $I = \{c \in R : a \mid c, b \mid c\}$. We claim that I is an ideal in R. For any $x, y \in I$, $a \mid (x+y)$ and $b \mid (x+y)$ clearly. Also, for any $r \in R$, $a \mid xr, rx$ so that I is now an ideal in R. Since R being an Euclidean ring and hence a Principal Ideal Domain, I = (c) for some $c \in R$. We now claim that c is the required least common multiple of a and b. By the definition, $a \mid c$ and $b \mid c$ clearly. Suppose $a \mid x$ and $b \mid x$ for some $x \in R$. Then $x \in I$. Hence, x is represented as a multiple of c, that is, $c \mid x$. Hence, c is the least common multiple of a and b.

8. In Problem 7, if the least common multiple of a and b is denoted by [a, b], prove that [a, b] = ab/(a, b).

Proof. Let d=(a,b). Thus $a=dk_1$, $b=dk_2$ for some $k_1,k_2 \in R$. Note that k_1 and k_2 are relatively prime, otherwise d is no more a greatest common divisor of a and b. We claim $[a,b]=dk_1k_2$. Let $c=dk_1k_2$. Then clearly $a\mid ak_2=c,\ b\mid bk_1=c$. Suppose $a\mid x$ and $b\mid x$ for some $x\in R$. Then $au_1=x,\ bu_2=x$ for some $u_1,u_2\in R$. From $au_1=bu_2,\ dk_1u_1=dk_2u_2\iff k_1u_1=k_2u_2$. Hence, $k_1\mid k_2u_2$. We know that $(k_1,k_2)=1$

so that $k_1 \mid u_2$. Consequently, $c = dk_2k_1 = bk_1 \mid bu_2 = x$ so that c is the required least common multiple of a and b. Recall that $c = dk_1k_2$ and $dk_1k_2 = ab/(a,b)$. Therefore, [a,b] = ab/(a,b).