Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 16, 2020

Problems in Section 3.6.

1. Prove that if [a, b] = [a', b'] and [c, d] = [c', d'] then [a, b][c, d] = [a', b'][c', d'].

Proof. Note that

$$[a,b] = [a',b'] \iff a'b = b'a, \quad [c,d] = [c',d'] \iff c'd = d'c$$

so that

$$a'c'(bd) - (b'd')(ac) = (a'b)(c'd) - (ab')(cd') = 0 \iff [a,b][c,d] = [a',b'][c',d'].$$

2. Prove the distributive law in F.

Proof. Suppose [a, b], [c, d] and [e, f] are given. Then

$$\begin{split} & [a,b]([c,d]+[e,f])=[a,b]([cf+ed,df])=[acf+aed,bdf] \\ & ([a,b][c,d])+([a,b][e,f])=[ac,bd]+[ae,bf]=[acbf+aebd,b^2df]=[acf+aed,bdf] \end{split}$$

so that [a, b]([c, d] + [e, f]) = ([a, b][c, d]) + ([a, b][e, f]). Similarly,

$$\begin{split} ([a,b]+[c,d])[e,f] &= [ad+bc,bd][e,f] = [ade+bce,bdf] \\ ([a,b][e,f]) + ([c,d][e,f]) &= [ae,bf] + [ce,df] = [aedf+bfce,bdf^2] = [ade+bce,bdf] \end{split}$$

so that ([a, b] + [c, d])[e, f] = ([a, b][e, f]) + ([c, d][e, f]). Hence the distribution laws are verified.

3. Prove that the mapping $\phi: D \to F$ defined by $\phi(a) = [a, 1]$ is an isomorphism of D to F.

Proof. It is clearly a homomorphism since

 $\phi(a+b) = [a+b,1] = [a,1] + [b,1], \quad \phi(ab) = [ab,1] = [ab,1\cdot 1] = [a,1][b,1].$

Now we investigate the kernel of ϕ . Suppose $\phi(a) = [a, 1] = [0, 1]$. Then it follows that a = 0, hence ϕ is an injection (isomorphism).

4. Prove that if K is any field which contains D then K contains a subfield isomorphic to F.

Proof. Define a mapping $\phi : F \to K$ by $\phi(a/b) = a/b$ (Be cautious with the meaning of slash in the left and right. They are different). We check if ϕ is a homomorphism. Note that

$$\phi(a/b + c/d) = \phi\left(\frac{ad + bc}{bd}\right) = (ad + bc)/bd = a/b + c/d,$$

$$\phi(a/b \cdot c/d) = \phi(ac/bd) = ac/bd = a/c \cdot b/d,$$

and hence ϕ is a homomorphism. We check if ϕ is injective. Suppose $\phi(a) = \phi(a/1) = 0$, then it is must that a = 0. Thus, ϕ is an imbedding of F into K. Therefore, K contains a subfield isomorphic to F.

5. Let R be a commutative ring with unit element. A nonempty subset S of R is called a multiplicative system if

1. $0 \in S$. 2. $s_1, s_2 \in S$ implies that $s_1, s_2 \in S$. Let M be the set of all ordered pairs (r, s) where $r \in R, s \in S$. In M define $(r, s) \sim (r', s')$ if there exists an element $s^* \in S$ such that

$$s''(rs' - sr') = 0$$

a) Prove that this defines an equivalence relation on M.

Proof. (Symmetry) For any $r \in R$, $s \in S$, (rs - sr) = 0 so that $(r, s) \sim (r, s)$. (Reflexive) For any $r, r' \in R$, $s, s' \in S$, if $(r, s) \sim (r', s')$,

$$s''(rs'-sr')=0 \iff s''rs'=s''sr' \iff s''(r's-s'r)=0$$

for some $s'' \in S$ so that $(r', s') \sim (r, s)$. (Transitive) For any $r, r', r'' \in R$, $s, s', s'' \in S$, if $(r, s) \sim (r', s')$ and $(r', s') \sim (r'', s'')$, then

$$u(rs' - sr') = 0, \quad v(r's'' - s'r'') = 0$$

for some $u, v \in S$. Then

 \mathbf{SO}

$$(uvs')(rs'' - sr'') = (urs')(vs'') - (vs'r'')(us) = (rsr')(vs'') - (vr's'')(us) = 0$$

that $(r,s) \sim (r'',s'')$.

Let the equivalence class of (r, s) be denoted by [r, s] and let R_S be the set of all the equivalence classes. In R_S define $[r_1, s_1] + [r_2, s_2] = [r_1s_2 + r_2s_1, s_1s_2]$ and $[r_1, s_1][r_2, s_2] = [r_1r_2, s_1s_2]$.

b) Prove that the addition and multiplication described above are well defined and that R_S forms a ring under these operations.

Proof. Suppose $[r_1, s_1] = [r'_1, s'_1]$ and $[r_2, s_2] = [r'_2 s'_2]$. Thus, there exits $u_1, u_2 \in S$ such that

$$u_1(r_1s'_1 - s_1r'_1) = 0, \quad u_2(r_2s'_2 - s_2r'_2) = 0$$

Observe that

$$\begin{aligned} (u_1u_2) \cdot \left[(r_1s_2 + r_2s_1)(s_1's_2') - (s_1s_2)(r_1's_2' + r_2's_1') \right] \\ &= (u_1r_1s_1')(u_2s_2s_2') + (u_1s_1s_1')(u_2r_2s_2') - (u_1r_1's_1)(u_2s_2s_2') - (u_1s_1s_1')(u_2r_2's_2') \\ &= (u_1r_1's_1)(u_2s_2s_2') + (u_1s_1s_1')(u_2r_2's_2') - (u_1r_1's_1)(u_2s_2s_2') - (u_1s_1s_1')(u_2r_2's_2') = 0 \end{aligned}$$

so that $[r_1s_2 + r_2s_1, s_1s_2] = [r'_1s'_2 + r'_2s'_1, s'_1s'_2]$. Hence, addition is well defined. Now for the multiplication,

$$\begin{aligned} (u_1u_2) \cdot \left[(r_1r_2)(s_1's_2') - (s_1s_2)(r_1'r_2') \right] \\ &= (u_1r_1s_1')(u_2r_2s_2') - (u_1s_1r_1')(u_2r_2's_2) \\ &= (u_1s_1r_1')(u_2r_2's_2) - (u_1s_1r_1')(u_2r_2's_2) = 0 \end{aligned}$$

so that $[r_1r_2, s_1s_2] = [r'_1r'_2, s'_1s'_2]$. Thus, multiplication is also well defined.

c) Can R be imbedded in R_S ?

Solution. It depends on the choice of S. Look at the next problem.

d) Prove that the mapping $\phi : R \to R_S$ defined by $\phi(a) = [as, s]$ is a homomorphism of R into R_S and find the kernel of ϕ .

Proof. Choose $a, b \in R$. Then

$$\begin{split} \phi(a+b) &= [(a+b)s,s] = [as+bs,s] = [as,s] + [bs,s], \\ \phi(ab) &= [(ab)s,s] = [abss,ss] = [as,s][bs,s] \end{split}$$

so that ϕ is a homomorphism. Let K be the kernel of ϕ . Then

$$K = \{x \in R : [xs, s] = [0, s'] \iff uxss' = 0 \text{ for some } u \in S\}.$$

Note that K may or may not be trivial, depending on the choice of S. Let $R = \mathbb{Z}_6$, $S = U_6$ and $S' = U_6 \cup 3$. Both the S and S' are multiplicative system of R. If we choose S, we get the trivial kernel K = (0) so that R can be imbedded to R_S , but if we choose S', setting s, s' = 1, then for the equation 3x = 0 we have $x = 0, 2 \in K$, so that $K \supseteq (0)$. Hence, appropriate choice of S is required for the imbedding of R into R_S

e) Prove that this kernel has no element of S in it.

Proof. If there is some $t \in S$ such that $t \in K$, then it must satisfy the equation utss' = 0 for some $u, \in S$ and each $s, s' \in S$. But the product of elements in S cannot be 0, so it is a contradiction.

f) Prove that every element of the form $[s_1, s_2]$ (where $s_1, s_2 \in S$) in R_S has an inverse in R_S .

Proof. Note that for each $s_1, s_2 \in S$, $[s_1, s_2] \cdot [s_2, s_1] = [s, s]$ where $s = s_1 s_2 \in S$. Since every unit element in R_S is of the form $[s, s], [s_2, s_1]$ is the inverse element for every $[s_1, s_2]$. \Box

6. Let D be an integral domain, $a, b \in D$. Suppose that $a^n = b^n$ and $a^m = b^m$ for two relatively prime positive integers m and n. Prove that a = b.

Proof. Since m and n are relatively prime positive integers, without loss of generality, there exists two integers $\lambda > 0$, $\mu < 0$ such that $m\lambda + n\mu = 1$. Thus,

$$a \cdot a^{(-\mu)n} = a^{m\lambda} = b^{m\lambda} = b \cdot b^{(-\mu)n} = b \cdot (b^n)^{(-\mu)} = b \cdot (a^n)^{(-\mu)} = b \cdot a^{(-\mu)n},$$
$$a \cdot a^{(-\mu)n} = b \cdot a^{(-\mu)n} \iff (a-b)a^{(-\mu)n} = 0.$$

Recall that D is an integral domain. If $a^{(-\mu)n} = 0$, then it forces us that a = 0. Hence, a = b = 0. If $a^n \neq 0$, it forces us that a - b = 0 so that a = b. Hence, in either cases, a = b.

7. Let R be a ring, possibly noncommutative, in which xy = 0 implies x = 0 or y = 0. If $a, b \in R$ and $a^n = b^n$ and $a^m = b^m$ for two relatively prime positive integers m and n, prove that a = b.

Proof. Exact same proof for the Problem 6 can be applied here; Hence proved. \Box