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Problems in Section 3.11.

1. Prove that R[x] is a commutative ring with unit element whenever R is.

Proof. Let p(x), q(x) ∈ R[x]. We can write p(x) and q(x) as

p(x) = a0 + a1x + · · ·+ anx
n, q(x) = b0 + b1x + · · ·+ bmxm

where ai, bj ∈ R, an, bm 6= 0, an+1 = an+2 = · · · = at = at+1 · · · = 0 and bm+1 = bm+2 =
· · · = bt = bt+1 = · · · = 0. Consequently,

p(x) + q(x) = c0 + c1x + · · · ctxt

where for each valid i, ci = ai+bi ∈ R. Thus, p(x)+q(x) ∈ R[x]. Additive identity is clearly
0. Inverse element for p(x) can be defined as −p(x) = (−a0)+(−a1)x+ · · · (−an)xn ∈ R[x].
Now for the multiplication,

p(x)q(x) = c0 + c1x + · · ·+ cn+mxn+m

where ci = a0bi + a1bi−1 + · · ·+ ai−1b1 + aib0. Clearly, ci ∈ R and hence p(x)q(x) ∈ R[x].
Suppose q(x)p(x) = d0+d1x+· · ·+dn+mxn+m. Then di = b0ai+b1ai−1+· · ·+bi−1a1+bia0 =
aib0 + ai−1b1 + · · · + a1bi−1 + a0bi = a0bi + a1bi−1 + · · · + ai−1b1 + aib0 = ci so that
p(x)q(x) = q(x)p(x) and hence R[x] is commutative. The unit element 1 is clearly in R[x].
For the distributive property, t(x)(p(x) + q(x)) where t(x) = t0 + t1x+ tkx

k. Observe that

r(x)(p(x) + q(x)) = r(x)(c0 + c1 + · · · ctxt)
= e0 + e1x + · · · ek+tx

k+t

where ei = r0ci + r1ci−1 + · · ·+ ric0 = r0(ai + bi) + r1(ai−1 + bi−1) + · · · ri(a0 + b0). In other
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side,

r(x)p(x) + r(x)q(x) = ((r0a0) + (r0a1 + r1a0)x + · · · (r0at+k + r1at+k−1 + · · · rt+ka0)x
t+k)

+ ((r0b0) + (r0b1 + r1b0)x + · · · (r0bt+k + t1bt+k−1 + · · · rt+kb0)x
t+k)

= r0(a0 + b0) + (r0(a1 + b1) + r1(a0 + b0))x + · · ·+ (r0(ai + bi) + r1(ai−1 + bi−1)) + · · ·
+ ri(a0 + b0))x

i + · · ·+ (r0(at+k + bt+k) + r1(at+k−1 + bt+k−1)) + · · · rt+k(a0 + b0))x
t+k

= r0c0 + (r0c1 + r1c0)x + · · · (r0ci + r1ci−1 + · · ·+ ric0)x
i+

· · ·+ (r0ct+k + r1ct+k−1 + · · · rt+kc0)x
t+k

= e0 + e1x + · · · eixi + · · ·+ et+kx
t+k = r(x)(p(x) + q(x)).

Therefore, the distributive property is verified. The other distributive property also holds
clearly. Thus, R[x] is also a ring with unit element whenever R is.

2. Prove that R[x1, · · · , xn] = R[xi1 , · · · , xin ], where (i1, · · · , in) is a permutation of
(1, 2, · · · , n).

Proof. Note that every elements f(x1, · · · , xn) in R[x1, · · · , xn] is of the form

f(x1, · · · , xn) =

n∑
j=1

aj1,j2,··· ,jnx
j1
1 xj22 · · ·x

jn
n .

For any permutation (i1, i2, · · · , in),

xj11 xj22 · · ·x
jn
n = x

ji1
i1

x
ji2
i2
· · ·xjinin

so that

f(x1, · · · , xn) =
n∑

j=1

aj1,j2,··· ,jnx
ji1
i1

x
ji2
i2
· · ·xjinin

∈ R[xi1 , · · · , xin ].

The opposite inclusion can be shown by the same method above. Thus R[x1, · · · , xn] =
R[xi1 , · · · , xin ].

3. If R is an integral domain, prove that for f(x), g(x) in R[x], deg(f(x)g(x)) = deg(f(x)+
deg(g(x)).

Proof. Same method for the proof of Lemma 3.9.1 can be used here.

4. If R is an integral domain with unit element, prove that any unit in R[x] must already
be a unit in R.
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Proof. Suppose f(x) is an unit in R[x]. Then there is q(x) ∈ R[x] such that f(x)g(x) =
1. Consequently, deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) = 0, implying deg(f(x)) =
deg(g(x)) = 0 so that f(x) = a, g(x) = b for some a, b ∈ R. Recall that ab = 1. Thus
f(x) = a is an unit in R.

5. Let R be a commutative ring with no nonzero nilpotent elements(that is, an = 0 implies
a = 0). If f(x) = a0 + a1x + · · · + amxm in R[x] is a zero divisor, prove that there is an
element b 6= 0 in R such that ba0 = ba1 = · · · = bam = 0.

Proof. We assume that am 6= 0. Since f(x) ∈ R[x] is a zero-divisor, there is g(x) =
b0 + b1x + · · · + bnx

n ∈ R[x], bn 6= 0 such that f(x)g(x) = 0. Suppose f(x)g(x) =
c0 + c1x + · · · ctxt. Then

cm+n = ambn, cm+n−1 = am−1bn + ambn−1, · · · c1 = a1b0 + a0b1, c0 = a0b0.

Since ci = 0 for all i, cm+n = ambn = 0. Observe that

0 = cm+n−1 · bn = (am−1bn + ambn−1)bn

= am−1b
2
n + (ambn)bn−1

= am−1(bn)2

so that am−1(bn)2 = 0. Similarly,

0 = cm+n−2 · b2n = (am−2bn + am−1bn−1 + ambn−2)b
2
n

= am−2b
3
n + (am−1b

2
n)bn−1 + (ambn)bnbn−2

= am−2(bn)3

so that am−2(bn)3 = 0. Hence, we can inductively find that am−k(bn)k+1 = 0 for all
k = 0, 1, 2, · · ·m. Now we know that R has no nonzero nilpotent elements. Thus, bm+1

n 6= 0.
Let b = bm+1

n . It is now clear that am−kb = am−k(bk+1
n )(bm−kn ) = 0 for all k.

6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent elements.

Proof. We prove that if f(x) = a0 + a1x + · · · + amxm is a zero-divisor of R[x], there
is r 6= 0 ∈ R[x] such that rf(x) = 0. Suppose not, then there exists a non-constant
polynomial g(x) = b0 + b1x + · · · + bkx

k of lowest degree in R[x]. Note that there is
coefficient ai of highest degree such that aig(x) 6= 0, otherwise bkf(x) = 0, a contradiction.
So we have

f(x)g(x) = (a0 + a1x + · · ·+ aix
i)(b0 + b1x + · · ·+ bkx

k) = 0.

Hence aibk = 0, so that deg(aig(x)) < k. Consequently, f(x)(aig(x)) = aif(x)g(x) = 0
but aig(x) is a polynomial of degree less than g(x). This contradicts the definition of g(x).
Therefore, there exists r 6= 0 ∈ R such that rf(x) = 0 ⇐⇒ ra0 = ra1 · · · = ran = 0.
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7. If R is a commutative ring with unit element, prove that a0 + a1x + · · ·+ anx
n in R[x]

has an inverse in R[x](i.e., is a unit in R[x]) if and only if a0 is a unit in R and a1, · · · , an
are nilpotent elements in R.

Proof. We first introduce a lemma.

Lemma. Let x and y be nilpotent elements in a commutative ring R with unit element.
Then x + y is also nilpotent. Further, for r ∈ R, rx is nilpotent. That is, collection of
nilpotent elements form an ideal in R. Moreover, 1 + x is an unit in R. Hence, sum of an
unit and nilpotent element is an unit in R.
(claim) Suppose m and n are the integers satisfying xm = yn = 0. Then

(x + y)m+n =
m+n∑
k=0

(
m + n

k

)
xkym+n−k = (ym+n + xym+n−1 + · · ·+ xm−1yn+1

+ xmyn + xm+1yn−1 + · · ·+ xm+n−1y + xm+n) = 0

so that x + y is nilpotent in R. Also, for any r ∈ R, (rx)m = rmxm = 0 so that rx is also
nilpotent in R. Now, we claim that 1 + x is an unit in R. Observe that

(1 + x)(1− x + x2 + · · ·+ (−1)m−1xm−1) = 1− x + x2 + · · ·+ (−1)m−1xm−1

+ x− x2 + · · ·+ (−1)m−1xm

= 1 + (−1)m−1xm = 1

so that 1 + x is clearly an unit in R. Now we prove that sum of an unit and nilpotent
element is an unit. Let u be an unit of R. Then uu′ = 1 for some u′ ∈ R. Consequently,
(u + x)u′ = 1 + xu′. Recall that xu′ is nilpotent. Thus, (u + x)u′ is an unit in R. Thus,
(u + x)u′v = (u + x)(u′v) = 1 for some v ∈ R. Therefore, u + x is also an unit in R.

Now we head to our problem. Let f(x) = a0 + a1x+ · · ·+ anx
n be a unit in R[x]. That is,

there is g(x) = b0 + b1x + · · ·+ bmxm such that

f(x)g(x) = (a0 + a1x + · · ·+ anx
n)(b0 + b1x + · · ·+ bmxm) = 1.

Clearly, this implies that

a0b0 = 1, a0b1 + a1b0 = 0, · · · , an−1bm + anbm−1 = 0, anbm = 0.

From above, we know that a0 is an unit in R. Further, without loss of generality, we can
assume that an 6= 0. We shall now claim that ar+1

n bm−r = 0 for all r = 0, 1, · · ·m. For
r = 0, it is trivial. Observe that

0 = an(an−1bm + anbm−1) = 0 + a2nbm−1 =⇒ a2nbm−1 = 0.
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We can repeat this process and inductively get the required result of ar+1
n bm−r = 0 for

all r = 0, 1, · · ·m. But note that since a0b0 = 1, am+1
n a0b0 = am+1

n · 1 = a0(a
m+1
n b0) = 0.

Hence an is nilpotent. From the lemma we established, f(x) − anx
n is a sum of unit and

nilpotent element, so that it is now an unit. So we can repeat the same process to obtain
that each of an1 , an−2, · · · , a1 are, in fact, nilpotent.
Conversely, assume that a0 is an unit and ai, i ≥ 1 is nilpotent. Given the fact that sum of
an unit and nilpotent element is an unit, a0 + a1x is also an unit. So inductively, we can
conclude that f(x) = a0 + a1x + · · ·+ anx

n is also an unit in R.

8. Prove that when F is a field, F [x1, x2] is not a principal ideal ring.

Proof. We claim that (x1, x2) is not a principal ideal. For the sake of contradiction, assume
that (x1, x2) = (p) for some polynomial p in F [x1, x2]. Then there exists polynomials
q1, q2 ∈ F [x1, x2] such that pq1 = x1, pq2 = x2. Note that from pq1 = x1, since F is a field,
p must have non-zero coefficient of x1 and from pq2 = x2, q2 has non-zero constant term
so that pq2 has non-zero coefficient of x1, which contradicts that pq2 = x2. Hence, (x1, x2)
is not a principal ideal.

9. Prove, completely, Lemma 3.11.2 and its corollary.

Proof. By the definition of Unique Factorization Domain(in short, UFD), for any non-unit
a, b ∈ R,

a = q1q2 · · · qn,
b = q′1q

′
2 · · · q′m

where qi, q
′
js are irreducibles in R. Now we re-order the irreducibles of a and b such that

a = (q1q2 · · · qk) · qk+1 · · · qn,
b = (q′1q

′
2 · · · q′k) · q′k+1 · · · q′m

where each qi, 1 ≤ i ≤ k ≤ min{n,m} is associate with q′i, and none of qi, i ≥ k + 1 is
associate with q′j , j ≥ k + 1. Let d = q1q2 · · · qk. We claim that d = (a, b). It is clear that
d | a and d | b. Suppose c is also a common divisor of a and b. As R is an UFD, c is also
a product of irreducibles of R. Suppose c - d. Then there exists an irreducible y such that
y divides one of qi, i ≥ k + 1 and q′j , j ≥ k + 1. This forces us to conclude that y is either
an unit or qi and qj are not irreducibles. But either of the cases leads to contradiction.
Hence, c | d and d is the required greatest common divisor of a and b.
Now suppose a and b are relatively prime and a | bc. Since none of irreducible factors of a
are associates with b, it must divide c(or in associate with some irreducible factors of c).
Thus, it forces us that a | c.
Now we prove the corollary. If a is an irreducible element and a | bc, then either (a, b) = 1
or (a, b) = a. If former was the cases, then a | c. If later was the case, a | b.
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10. a) If R is a unique factorization domain, prove that every f(x) ∈ R[x] can be written
as f(x) = ag1(x), where a ∈ R and where f1(x) is primitive.

Proof. Let f(x) = a0 + a1x + a2x
2 + · · · anxn where ai ∈ R. Define a = (a0, a1, · · · , an).

Then

f(x) = a(b0 + b1x + b2x
2 · · ·+ bnx

n) = af1(x)

where (b0, b1, · · · bn) = 1. Hence f1(x) is primitive and f(x) = af1(x).

b) Prove that the decomposition in part (a) is unique (up to associates).

Proof. Suppose f(x) = af1(x) = bf2(x) for some primitive polynomials f1(x), f2(x) ∈ R[x].
Let c(f) denote the content of the polynomials. Then

c(f) = c(af1) = c(bf2)

(a0, a1, · · · an) = a · c(f1) = a = b · c(f2) = b

so that a and b are also greatest common divisors of coefficients of f(x). But since every
gcd’s are associates, so does a and b, and hence af1(x) and bf2(x).

11. If R is an integral domain, and if F is its field of quotients, prove that any element
f(x) in F [x] can be written as f(x) = (f0(x)/a), where f0(x) ∈ R[x] and where a ∈ R.

Proof. Let f(x) be a polynomial in F [x] such that

f(x) =
a0
b0

+
a1
b1

x + · · ·+ an
bn

xn

where ai ∈ R, bi 6= 0 ∈ R. We set a = b0b1 · · · bn ∈ R. Then

f(x) =
a0b1 · · · bn

a
+

a1b0b2 · · · bn
a

x + · · ·+ anb0b1 · · · bn−1
a

xn

=
a0b1 · · · bn + a1b0b2 · · · bnx + anb0 · · · bn−1xn

a

=
f0(x)

a

for some f0(x) = a0b1 · · · bn + a1b0b2 · · · bnx + anb0 · · · bn−1xn ∈ R[x].

12. Prove the converse part of Lemma 3.11.4.

Proof. Suppose f(x) ∈ R[x] is primitive and irreducible as an element of F [x]. If f(x) is
not irreducible in R[x],

f(x) = g(x)k(x)

for some non constant g(x), k(x) ∈ R[x]. But each g(x) and k(x) can be viewed as elements
in F [x]. Thus f(x) = g(x)k(x) in F [x], which contradicts that f(x) is irreducible in F [x].
Hence, f(x) is also irreducible in R[x].
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13. Prove Corollary 2 to Theorem 3.11.1.

Proof. Note that F [x1] is always an Unique Factorization Domain. Applying the Corollary
1, F [x1, x2, · · · , xn] is also an Unique Factorization Domain. Hence proved.

14. Prove that a principal ideal ring is a unique factorization domain.

Proof. We can show that every PID is a GCD closed domain, following the proof of
Lemma 3.7.1. Also, Lemma 3.7.5 and Lemma 3.7.6 assure us that irreducibles of PID
are primes(and in fact, vice versa), so that Theorem 3.7.2 is valid. Now we have to show
that Lemma 3.7.4 also valids in PID.
We introduce the notion of ascending chain condition and Noetherian ring: A commuta-
tive ring R satisfies the ascending chain condition (ACC) on ideals if there is no infinite
sequence of ideals in R which each term properly contains the previous one. That is, if

U1 ⊂ U2 ⊂ U3 ⊂ · · ·

is a chain of ideals of R, then there is some integer m such that Um = Um+k for all k ≥ 0.
Commutative ring satisfying ACC is called Noetherian.
Let R be a PID. Consider the chain on ideals U1 ⊂ U2 ⊂ U3 ⊂ · · · . U∞ = ∪k=1Uk is also
an ideal in R. Since R being a PID, there is a ∈ R such that (a) = U∞. Thus, a ∈ Un for
some n. Then for every k ≥ 0, Un+k = Un. Therefore, R is Noetherian.
Now assume that U ⊂ R be the set of ideals generated by each elements of R that cannot
be written by a product of irreducible elements of R. If U 6= ∅, U has a maximal element
(r) since R being Noetherian. r is not irreducible, hence not a prime. Therefore, (r) is
not a maximal ideal in R. So there is s ∈ R such that (s) properly contains (r) and s | r.
Consequently, (s) 6∈ U , so that s is a product of irreducibles. Choose an irreducible(prime)
a such that a | s, then a | r so that r = ab for some b ∈ R. If (b) ∈ U , then b is an
irreducible and hence r is a product of irreducibles, a contradiction. If (b) ∈ U , then
(r) ( (b) (notice that ab = r, thus (b) properly contains (r)) contradicting the maximality
of (r) in the chain. Thus, U = ∅ and we can conclude that R is a UFD.

15. If J is the ring of integers, prove that J [x1, x2, · · · , xn] is a unique factorization domain.

Proof. Note that J is an Euclidean ring with unit element so that it is an PID, and hence,
UFD. Consequently, J [x1] is also an UFD. Induction shows that J [x1, x2, · · · , xn] is an
UFD.
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