Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 20, 2020

Problems in Section 3.10.

1. Let D be a Euclidean ring, F its field of quotients. Prove the Gauss Lemma for polynomials with coefficients in D factored as products of polynomials with coefficients in F.

Proof. The proof is similar to that of Theorem 3.10.1. \Box

2. If p is a prime number, prove that the polynomial $x^n - p$ is irreducible over the rationals.

Proof. Apply Eisenstein's criterion. We see that $p \nmid a_n$, $p \mid a_i$, $i = 1, \dots, n-1$, $p \mid -p = a_0$ but $p^2 \nmid a_0$. Hence, $x^n - p$ is irreducible over the rationals.

3. Prove that the polynomials $1 + x + \cdots + x^{p-1}$, where p is a prime number, is irreducible over the field of rational numbers.

Proof. Suppose $f(x) = 1 + x + \dots + x^{p-1}$ was reducible then so does $f(x+1) = 1 + (x+1) + \dots + (x+1)^{p-1}$. With some calculations,

$$f(x+1) = 1 + (x+1) + \dots + (x+1)^{p-1}$$

= $\frac{(x+1)^p - 1}{(x+1) - 1} = \frac{x^p + px^{p-1} + \binom{p}{2}x^{p-2} + \dots + px^{p-1}}{x}$
= $x^{p-1} + px^{p-2} + \binom{p}{2}x^{p-3} + \dots + p$

and by Eisenstein's criterion, f(x+1) is irreducible over rationals. Hence its a contradiction. Therefore, $f(x) = 1 + x + \cdots + x^{p-1}$ is irreducible over rationals.

4. If m and n are relatively prime integers and if

$$\left(x-\frac{m}{n}\right)\mid (a_0+a_1x+\cdots+a_rx^r),$$

where the *a*'s are integers, prove that $m \mid a_0$ and $n \mid a_r$.

Proof. Let $f(x) = a_0 + a_1 x + \dots + a_r x^r$. Then there exists $g(x) = b_0 + b_1 x + \dots + b_{r-1} x^{r-1}$ such that

$$\begin{pmatrix} x - \frac{m}{n} \end{pmatrix} g(x) = f(x) \iff \left(x - \frac{m}{n} \right) (b_0 + b_1 x + \dots + b_{r-1} x^{r-1}) = a_0 + a_1 x + \dots + a_r x^r \iff -\frac{m}{n} b_0 + \left(b_0 - \frac{m}{n} b_1 \right) x + \dots + \left(b_{r-2} - \frac{m}{n} b_{r-1} \right) x^{r-1} + b_{r-1} x^r = a_0 + a_1 x + \dots + a_{r-1} x^{r-1} + a_r x^r \implies -\frac{m}{n} b_0 = a_0, \quad a_r = \frac{n}{m} (b_{r-2} - a_{r-1}) \implies na_0 = -mb_0, \quad ma_r = n (b_{r-2} - a_{r-1})$$

so that $m \mid na_0$ and $n \mid ma_r$. Since (m, n) = 1, $m \mid a_0$ and $n \mid a_r$.

5. If a is rational and x - a divides an integer monic polynomial, prove that a must be an integer.

Proof. We use the result of Problem 4. We can assume that a = m/n, where (m, n) = 1. As given polynomial is integer monic and n divides the coefficient of largest degree, that is, 1, $n \mid 1$ and hence $a = \pm m \in \mathbb{Z}$. Therefore, a is an integer.