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Problems in the Section 2.8.

1. Let G be a group; consider the mappings of G into itself, λg, defined for g ∈ G by
xλg = gx for all x ∈ G. Prove that λg is one-to-one and onto, and that λgh = λhλg.

Proof. Suppose xλg = yλg. Then gx = gy ⇐⇒ x = y. Thus, λg is one-to-one. Also,
(g−1x)λg = g(g−1x) = x implying λg is onto. Moreover, xλgh = gh(x) = g(hx) = g(xλh) =
(xλh)λg = xλhλg. Hence, λgh = λhλg.

2. Let λg be defined as in Problem 1, τg as in the proof of Theorem 2.9.1. Prove that for
any g, h ∈ G, the mappings λg, τh satisfy λgτh = τhλg.

Proof. Let x ∈ G. Observe that

xλgτh = (gx)τh = gxh = g(xh) = g(xτh) = (xτh)λg = xτhλg.

Hence proved.

3. If θ is a one-to-one mapping of G onto itself such that λgθ = θλg for all g ∈ G, prove
that θ = τh for some h ∈ G.

Proof. Note that xλgθ = xθλg ⇐⇒ θ(gx) = gθ(x) for all x ∈ G. Since this holds for every
g ∈ G, θ(x−1 · x) = x−1θ(x) ⇐⇒ θ(x) = xθ(e). Let h = θ(e). Consequently, θ = τh.

4. a) If H is a subgroup of G show that for every g ∈ G, gHg−1 is a subgroup of G.

Proof. Refer to the Problem 4 of section 2.5.

b) Prove that W = intersection of all gHg−1 is a normal subgroup of G.

Proof. Refer to the Problem 18 of section 2.5.

5. Using Lemma 2.9.1 prove that a group of order p2, where p is a prime number, must
have a normal subgroup of order p.
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Proof. Suppose G is a group of order p2. If G is cyclic and G = (a), we have (ap) the
normal subgroup of G of order p. So, we now assume that G is not cyclic. Choose a ∈ G.
Then the order of a is either 1 or p. If a 6= e, then the order of a is p. Thus, (a) is now
the subgroup of order p. We show that (a) is normal in G. Note that p2 - p!. This implies
that there exists a non-trivial normal subgroup contained in (a). Since o(a) = p, (a) is
the non-trivial normal subgroup. Hence, we have shown that every group of order p2 must
have a normal subgroup of order p.

6. Show that in a group G of order p2 any normal group of order p must lie in the center
of G.

Proof. Let H be the normal group of order p. Since H is cyclic, H = (h). Using the
normality of H, for all g ∈ G,

ghg−1 = hk

for some 0 < k < p. Note that ghnh−1 = hnk and gnhg−n = hk
n

for any natural n. Since

gp
2

= e, gp
2
hg−p2 = h = hk

p2

implying kp
2 ≡ 1 (mod p). Now by Fermat’s little theorem,

1 ≡ kp
2 ≡ kp ≡ k (mod p) implying k = 1. Therefore, ghg−1 = h for all g ∈ G. Thus, H

lies in Z(G).

7. Using the result of Problem 6, prove that any group of order p2 is abelian.

Proof. Let G be the group of order p2. If G is cyclic then it is trivial. Otherwise, by
Problem 5, we have a subgroup (a) of G of order p. Now consider b ∈ G−(a). Then b must
have order p. Now we have a subgroup (b) with order p. Applying the same procedure in
Problem 5, since p2 - p!, (b) must be normal in G. Note that by Problem 6, (a) ⊂ Z(G)
and b 6∈ (a) and b ∈ Z(G), o(Z(G)) > p. Now by Lagranges theorem, o(Z(G)) = p2 and
hence Z(G) = G. Thus, G is abelian.

8. If p is a prime number, prove that any group of G of order 2p must have a subgroup of
order p, and that this subgroup is normal in G.

Proof. If G is cyclic, say, G = (a) for some a ∈ G, then the subgroup (a2) generated by a2

is of order p. Normality is clear since G is cyclic. Suppose, G is not cyclic. If there is an
element a of order p, then (a) is a subgroup of order p and since [G : (a)] = 2, (a) is normal
in G. Now suppose we assume that there is no element of order p. Consequently, every
elements in G is of self-inverses. Now we have G is abelian. But applying the Cauchy’s
theorem for abelian case, G must have an element of order p since p | 2p. This contradicts
our hypothesis. Therefore, we can conclude that for any group G of order 2p, it must have
a subgroup of order p and this subgroup is normal in G.

9. If o(G) is pq where p and q are distinct prime numbers and if G has a normal subgroup
of order p and normal subgroup of order q, prove that G is cyclic.
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Proof. Let (a) and (b) be the normal subgroups of order p and q respectively. Since
gcd(p, q) = 1, (a)∩ (b) = (e). Moreover, since these are abelian normal subgroups, product
group (a)(b) is abelian. Note that

o((a)(b)) =
o(a) · o(b)
o((a) ∩ (b))

=
pq

1
= pq

so that (a)(b) = G. Now we have G is abelian. Since a, b are elements of order p, q
respectively, applying the Problem 25 of section 2.5, there exists an elements of order
lcm(p, q) = pq. This shows that G is cyclic.

10. Let o(G) be pq, p > q are primes, prove
a) G has a subgroup of order p and a subgroup of order q.

Proof. Suppose G is cyclic. Then we have G = (a) for some a ∈ G. Consequently, (aq)
and (ap) are the required subgroups of order p and q respectively. Now, we assume that G
is not cyclic. If there is an element a of order p, this must be unique subgroup of order p
(refer to the comments in pg 46 in the Herstein’s book). Now choose b ∈ G − (a). Then
the only choice for the order of b is q. Hence, we established the subgroups of order p and
q respectively. Now assume that there are only elements of order q. Then the number of
non-identity elements is multiple of q and equal to pq − 1. But this is weird. Hence, G
must have an element of order p.

b) If q - p− 1, then G is cyclic.

Proof. We introduce some useful lemmas:

Lemma. If G is a group and G/Z(G) is cyclic, then G is abelian.
⇒ Suppose G/Z(G) is cyclic, then we can write G/Z(G) = (aZ) for some a ∈ G. Note
that for any x ∈ G lies in one of the coset akZ. Thus, we can represent x as x = ak1z1,
y = ak2z2 for some k1, k2 ∈ Z and z1, z2 ∈ Z(G). Consequently,

xy = (ak1z1)(a
k2z2) = ak1(z1a

k2)z2 = ak1ak2z1z2 = ak1+k+2z1z2,

while

yx = (ak2z2)(a
k1z1) = ak2(z2a

k1)z1 = ak2ak1z2z1 = ak1+k2z1z2,

so that xy = yx. Hence, G is abelian.

Lemma. If G is a group and H is a normal subgroup of G. Let G acts on H by conjugation
as automorphisms of H, then G/C(H) ↪→ A (H). That is, G/C(H) is isomorphic to a
subgroup of A (G). Here C(H) denotes the centralizer of subgroup H.
⇒ Let us define a mapping φ : G → A (G) by φ(g) = Tg where Tg : H → H is an
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automorphism defined as Tg(h) = ghg−1 where h ∈ H. Clearly, φ is a homomorphism,
with the kernel Ker(φ) = {g ∈ G : Tg = I ⇐⇒ gh = hg,∀h ∈ H} = C(H). Now apply
Isomorphism theorem to obtain G/C(H) ↪→ A (H).

If G was abelian, then by a), we have elements of order p and q respectively. Applying
Problem 24 of section 2.3 2.5, we can conclude that there is an element of order lcm(p, q) =
pq so that G is cyclic. Now we assume that Z(G) is non-trivial but does not equal to
G itself. Since the order of G/Z(G) is either p or q, so that G/Z(G) is cyclic and hence
G is abelian. Thus, we are now left with the case of G having trivial center. That is,
Z(G) = (e). Note that the subgroup H of G with order p must be normal in G. Applying
the lemma above, we have G/C(H) ↪→ A (H). Moreover, from the fact that Z(G) = (e),
and H ⊂ C(H), C(H) is of order either p or pq. But if C(H) has order of pq, then this
contradicts the fact that Z(G) = (e). Hence, C(H) = H. Therefore, G/H ↪→ A (H). Note
that o(G/H) = q and o(A (H)) = φ(p) = p − 1. It follows that q | p − 1, contrary to our
hypothesis that q - p− 1. Hence, Z(G) = (e) is not the case again. We conclude that G is
abelian, and applying the assertion of Problem 9, G is cyclic.

c) Given two primes p, q, q | p− 1, there exists a non-abelian group of order pq.

Proof. We shall continue using the notations introduced above. We build a non-abelian
group of order pq with the method of construction used in Pg.69. From the assertions of
b), if q | p− 1, A (H) admits a subgroup of order q, that is, there exists an automorphism
φ ∈ A (H) such that φ(h) = hi for iq ≡ 1 (mod p). Let h and k be the generators of H
and K(group of order q). Now let the action of k on P by conjugation be x 7→ xj with
j 6= 1 (mod p). Thus,

G =< h, k : hp = e, kq = e, khk−1 = hj >

In this way, G is non-abelian group. In an explicit way, G is isomorphic to

G '
{(

h k
0 1

)
: h ∈ Up, k ∈ Zp, h

q = 1 (mod p)

}
.

d) Any two non-abelian groups of order pq are isomorphic.

Proof. Note that choosing different j in above is exactly the same of choosing differ-
ent generator for the group K. Thus, this gives that the obtained group is an isomor-
phism(isomorphic) to G.
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