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Problems in the Section 2.8.

1. Let G be a group; consider the mappings of G into itself, \j, defined for ¢ € G by
x)g = gz for all z € G. Prove that )\, is one-to-one and onto, and that Ay, = ApA.

Proof. Suppose z\; = y)Ay. Then gz = gy <= =z = y. Thus, A, is one-to-one. Also,
(g 'z)A\y = g(¢7'x) = x implying A, is onto. Moreover, zAgy, = gh(z) = g(hx) = g(xA,) =
(x/\h))\g = a:)\h)\g. Hence, )\gh = )\h)\g' ]

2. Let Ay be defined as in Problem 1, 7, as in the proof of Theorem 2.9.1. Prove that for
any g, h € G, the mappings Ay, 7, satisfy g7, = 1,A4.

Proof. Let x € G. Observe that
xAgTh = (92)Th = grh = g(zh) = g(axm) = (XTh)Ag = TTRA,.
Hence proved. O

3. If 0 is a one-to-one mapping of G onto itself such that \;0 = 6, for all g € G, prove
that 6 = 73, for some h € G.

Proof. Note that zA\;0 = 26\, <= 0(gx) = gf(z) for all x € G. Since this holds for every
geEG, Ozt - 2) =279(x) < O(x) = z0(e). Let h = f(e). Consequently, § = 7,. [

4. a) If H is a subgroup of G show that for every g € G, gHg ™!

is a subgroup of G.
Proof. Refer to the Problem 4 of section 2.5. O
b) Prove that W = intersection of all gHg~! is a normal subgroup of G.

Proof. Refer to the Problem 18 of section 2.5. 0

5. Using Lemma 2.9.1 prove that a group of order p?, where p is a prime number, must
have a normal subgroup of order p.



Proof. Suppose G is a group of order p?. If G is cyclic and G = (a), we have (aP) the
normal subgroup of G of order p. So, we now assume that G is not cyclic. Choose a € G.
Then the order of a is either 1 or p. If a # e, then the order of a is p. Thus, (a) is now
the subgroup of order p. We show that (a) is normal in G. Note that p? { p!. This implies
that there exists a non-trivial normal subgroup contained in (a). Since o(a) = p, (a) is
the non-trivial normal subgroup. Hence, we have shown that every group of order p? must
have a normal subgroup of order p. O

6. Show that in a group G of order p? any normal group of order p must lie in the center
of G.

Proof. Let H be the normal group of order p. Since H is cyclic, H = (h). Using the
normality of H, for all g € G,

ghg™ = h"

for some 0 < k < p. Note that gh"h~! = h™ and ¢"hg™" = h*¥" for any natural n. Since
gp2 =e, gp2 hg_p2 =h= h”“p2 implying =1 (mod p). Now by Fermat’s little theorem,
1=k =kP =k (mod p) implying k = 1. Therefore, ghg~! = h for all g € G. Thus, H
lies in Z(G). O

7. Using the result of Problem 6, prove that any group of order p? is abelian.

Proof. Let G be the group of order p?. If G is cyclic then it is trivial. Otherwise, by
Problem 5, we have a subgroup (a) of G of order p. Now consider b € G — (a). Then b must
have order p. Now we have a subgroup (b) with order p. Applying the same procedure in
Problem 5, since p? { p!, (b) must be normal in G. Note that by Problem 6, (a) C Z(G)
and b ¢ (a) and b € Z(G), o(Z(G)) > p. Now by Lagranges theorem, o(Z(G)) = p? and
hence Z(G) = G. Thus, G is abelian. O

8. If p is a prime number, prove that any group of G of order 2p must have a subgroup of
order p, and that this subgroup is normal in G.

Proof. If G is cyclic, say, G = (a) for some a € G, then the subgroup (a?) generated by a?
is of order p. Normality is clear since G is cyclic. Suppose, G is not cyclic. If there is an
element a of order p, then (a) is a subgroup of order p and since [G : (a)] = 2, (a) is normal
in G. Now suppose we assume that there is no element of order p. Consequently, every
elements in G is of self-inverses. Now we have G is abelian. But applying the Cauchy’s
theorem for abelian case, G must have an element of order p since p | 2p. This contradicts
our hypothesis. Therefore, we can conclude that for any group G of order 2p, it must have
a subgroup of order p and this subgroup is normal in G. O

9. If o(G) is pq where p and ¢ are distinct prime numbers and if G has a normal subgroup
of order p and normal subgroup of order ¢, prove that G is cyclic.



Proof. Let (a) and (b) be the normal subgroups of order p and ¢ respectively. Since
ged(p,q) =1, (a)N(b) = (e). Moreover, since these are abelian normal subgroups, product
group (a)(b) is abelian. Note that

so that (a)(b) = G. Now we have G is abelian. Since a,b are elements of order p,q
respectively, applying the Problem 25 of section 2.5, there exists an elements of order
lem(p, q) = pqg. This shows that G is cyclic. O

10. Let o(G) be pq, p > q are primes, prove
a) G has a subgroup of order p and a subgroup of order q.

Proof. Suppose G is cyclic. Then we have G = (a) for some a € G. Consequently, (a?)
and (aP) are the required subgroups of order p and g respectively. Now, we assume that G
is not cyclic. If there is an element a of order p, this must be unique subgroup of order p
(refer to the comments in pg 46 in the Herstein’s book). Now choose b € G — (a). Then
the only choice for the order of b is q. Hence, we established the subgroups of order p and
q respectively. Now assume that there are only elements of order q. Then the number of
non-identity elements is multiple of ¢ and equal to pg — 1. But this is weird. Hence, G
must have an element of order p. O

b) If ¢ 1 p — 1, then G is cyclic.
Proof. We introduce some useful lemmas:

Lemma. If G is a group and G/Z(G) is cyclic, then G is abelian.

= Suppose G/Z(G) is cyclic, then we can write G/Z(G) = (aZ) for some a € G. Note
that for any z € G lies in one of the coset a*Z. Thus, we can represent x as x = a¥ 2,
y = a*2zy for some ki, ke € Z and z1, 23 € Z(G). Consequently,

Ty = (aklzl)(ak2z2) akl(zlak2)zz = aMak2 2129 = AP TE22 2,

while

yr = (aszg)(aklzl) akQ(zgakl)zl = a"?aM 2921 = MRz 20,

so that zy = yx. Hence, G is abelian.

Lemma. If G is a group and H is a normal subgroup of G. Let G acts on H by conjugation
as automorphisms of H, then G/C(H) — «/(H). That is, G/C(H) is isomorphic to a
subgroup of «7(G). Here C'(H) denotes the centralizer of subgroup H.

= Let us define a mapping ¢ : G — #(G) by ¢(9) = Ty, where T, : H — H is an



automorphism defined as Ty(h) = ghg~' where h € H. Clearly, ¢ is a homomorphism,

with the kernel Ker(¢) ={ge€ G:T, =1 <= gh = hg,Yh € H} = C(H). Now apply
Isomorphism theorem to obtain G/C(H) — </ (H).

If G was abelian, then by a), we have elements of order p and ¢ respectively. Applying
Problem 24 of section 2.3 2.5, we can conclude that there is an element of order lem(p, ¢) =
pq so that G is cyclic. Now we assume that Z(G) is non-trivial but does not equal to
G itself. Since the order of G/Z(G) is either p or g, so that G/Z(G) is cyclic and hence
G is abelian. Thus, we are now left with the case of G having trivial center. That is,
Z(G) = (e). Note that the subgroup H of G with order p must be normal in G. Applying
the lemma above, we have G/C(H) — &/ (H). Moreover, from the fact that Z(G) = (e),
and H C C(H), C(H) is of order either p or pg. But if C'(H) has order of pq, then this
contradicts the fact that Z(G) = (e). Hence, C(H) = H. Therefore, G/H — </ (H). Note
that o(G/H) = q and o(«/(H)) = ¢(p) = p — 1. Tt follows that ¢ | p — 1, contrary to our
hypothesis that ¢ { p — 1. Hence, Z(G) = (e) is not the case again. We conclude that G is
abelian, and applying the assertion of Problem 9, GG is cyclic. O

c¢) Given two primes p,q,q | p — 1, there exists a non-abelian group of order pq.

Proof. We shall continue using the notations introduced above. We build a non-abelian
group of order pg with the method of construction used in Pg.69. From the assertions of
b),if ¢ | p— 1, &/ (H) admits a subgroup of order ¢, that is, there exists an automorphism
¢ € o/ (H) such that ¢(h) = h' for i = 1 (mod p). Let h and k be the generators of H
and K (group of order ¢q). Now let the action of k on P by conjugation be z — 2/ with
j # 1 (mod p). Thus,

G=<hk:h=eki=ekhk ™ =h >

In this way, G is non-abelian group. In an explicit way, G is isomorphic to

G:{(g I;) :hGUp,k‘EZp,hqzl(modp)}.

d) Any two non-abelian groups of order pq are isomorphic.

Proof. Note that choosing different j in above is exactly the same of choosing differ-
ent generator for the group K. Thus, this gives that the obtained group is an isomor-
phism(isomorphic) to G. O



