Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 6, 2020

Problems in the Section 2.8.

1. Are the following mappings automorphism of their respective groups? a) G a group of integers under addition, $T: x \to -x$.
Solution. T is clearly a homomorphism since $(x+y)T = -(x+y) = -x - y = xT + yT$. Surjection and injection are clear as $(-x)T = x$ for all $x \in \mathbb{Z}$ and $-x = -y$ implies $x = y$. Hence, T is an automorphism.
o) G group of positive reals under multiplication, $T: x \to x^2$.
Solution. T is an automorphism. Note that $(xy)T = (xy)^2 = x^2y^2 = (xT)(yT)$ so that T is a homomorphism. It has the trivial kernel. Hence, injective. Moreover, $\sqrt{x}T = x$ for any $x > 0$ in reals. Thus, T is bijective and hence an automorphism.
c) G cyclic group of order 12, $T: x \to x^3$.
Solution. Let $G=(a)$ for some $a\in G$. T is not an automorphism since $aT=a^3=a^5T$ out $a\neq a^5$.
d) G is the group $S_3, T: x \to x^{-1}$.
Solution. T is not an automorphism since $(xy)T = y^{-1}x^{-1} \neq x^{-1}y^{-1} = xTyT$ for any order 2 element x and any order 3 element y.
2. Let G be a group, H a subgroup of G, T an automorphism of $(H)T = \{hT : h \in H\}$. Prove $(H)T$ is a subgroup of G.
<i>Proof.</i> Let $h_1T, h_2T \in (H)T$. Then $h_1T \cdot h_2T = (h_1h_2)T \in (H)T$ and $(h_1^{-1})T = (h_1T)^{-1} \in (H)T$

3. Let G be a group, T an automorphism of G, N a normal subgroup of G. Prove that

(H)T. These facts imply that (H)T is a subgroup of G.

(N)T is an normal subgroup of G.

Proof. Clearly, (N)T is a subgroup. Now, since T is an automorphism, for any $g \in G$, $g_0T = g$ with some $g_0 \in G$. Choose $nT \in (N)T$. Then $g(nT)g^{-1} = g_0TnTg_0^{-1}T = (g_0ng_0^{-1})T \in (N)T$ implying (N)T is normal in G.

4. For $G = S_3$, prove that $G \simeq \mathscr{I}(G)$

Proof. Note that for
$$G = S_3$$
, $Z(G) = \{e\}$. Using $G/Z(G) \simeq \mathscr{I}(G)$, we have $G \simeq \mathscr{I}(G)$.

5. For any group G prove that $\mathscr{I}(G)$ is a normal subgroup of $\mathscr{A}(G)$ (the subgroup $\mathscr{A}(G)/\mathscr{I}(G)$ is called the group of outer automorphisms of G.

Proof. Let $T \in \mathcal{A}(G)$ and $T_q \in \mathcal{I}(G)$. For all $x \in G$,

$$(x)TT_gT^{-1} = (xT)T_gT^{-1} = (g(xT)g^{-1})T^{-1} = ((g_0)T(xT)(g_0^{-1})T)T^{-1} = g_0xg_0^{-1} = xT_{g_0} \in \mathscr{I}(G)$$

for some $g_0 \in G$. Hence, $\mathscr{I}(G)$ is normal in $\mathscr{A}(G)$.

6. Let G be a group of order 4, $G = \{e, a, b, ab\}, a^2 = b^2 = e, ab = ba$. Determine $\mathscr{A}(G)$.

Proof. Let us consider G as a set of 4 elements. Then the number of bijections between the same G are given by 4! = 24. But among these, since we seek a homomorphism, identity element e must be mapped to e. Thus we are left out with 4!/4 = 3! choices. Listing the candidates for the automorphisms, we have

$$e = \begin{pmatrix} e & a & b & ab \\ e & a & b & ab \end{pmatrix}, \phi = \begin{pmatrix} e & a & b & ab \\ e & b & a & ab \end{pmatrix}, \psi = \begin{pmatrix} e & a & b & ab \\ e & b & ab & a \end{pmatrix},$$
$$\begin{pmatrix} e & a & b & ab \\ e & a & ab & b \end{pmatrix}, \begin{pmatrix} e & a & b & ab \\ e & ab & a & b \end{pmatrix}, \begin{pmatrix} e & a & b & ab \\ e & ab & b & a \end{pmatrix}.$$

Note that $\phi^2 = e$, $\psi^3 = e$, and

$$\psi \cdot \phi = \begin{pmatrix} e & a & b & ab \\ e & a & ab & b \end{pmatrix}, \phi \cdot \psi = \begin{pmatrix} e & a & b & ab \\ e & ab & a & b \end{pmatrix}, \psi^2 \cdot \phi = \begin{pmatrix} e & a & b & ab \\ e & ab & b & a \end{pmatrix}.$$

Now we check that 6 bijections are in fact, homomorphisms. Observe that

$$e(ab) = ab = e(a)e(b), \quad \phi(ab) = ab = ba = \phi(a)\phi(b),$$

$$\psi(ab) = a = b^{2}a = b(ba) = b(ab) = \psi(a)\psi(b),$$

$$(\psi\phi)(ab) = b = a^{2}b = a(ab) = (\psi\phi)(a)(\psi\phi)(b),$$

$$(\phi\psi)(ab) = b = ba^{2} = (ba)a = (ab)a = (\phi\psi)(a)(\phi\psi)(b),$$

$$(\psi^{2}\phi)(ab) = a = ab^{2} = (ab)b = (\psi^{2}\phi)(a)(\psi^{2}\phi)(b).$$

Therefore, these 6 bijections are the whole automorphisms of G. Moreover, $\mathscr{A}(G) \simeq S_3$. \square

7. a) A subgroup C of G is said to be a characteristic subgroup of G if C of G for all automorphisms G of G. Prove a characteristic subgroup of G must be a normal subgroup of G.

Proof. Let $g \in G$ and $T \in \mathscr{A}(G)$. Choose $c \in C$. Note that $gcg^{-1}T = gTcTg^{-1}T = g_0(cT)g_0^{-1} = (cT)T_{q_0} \in C$ for some $g_0 \in G$. Hence, C is normal in G.

b) Prove that the converse of a) is false.

Proof. Consider the group G defined in the Problem 6(Klein-4 group). Let $N = \{e, a\}$. Clearly, N is normal in G. But for $\phi \in \mathscr{A}(G)$, $a\phi = b \notin N$. This implies N is not a characteristic subgroup of G.

8. For any group G, prove that the commutator subgroup G' is a characteristic subgroup of G.

Proof. Let $a, b \in G$. It is enough to show that $aba^{-1}b^{-1}$ is closed under automorphism T in G'. Note that

$$aba^{-1}b^{-1}T = (aT)(bT)(a^{-1}T)(b^{-1}T) \in G'.$$

Hence, G' is a characteristic subgroup of G.

9. If G is a group, N a normal subgroup of G, M a characteristic subgroup of N, prove that M is a normal subgroup of G.

Proof. Let $g \in G$. Define a mapping $\phi_g : N \to N, n \mapsto gng^{-1}$. Since N is normal in G, this is well defined automorphism in N. Now, choose $m \in M$. Since $mT \in M$, so does $m\phi_g = gmg^{-1} \in M$. Thus, M is normal in G.

10. Let G be a finite group, T an automorphism of G with the property that xT = x for $x \in G$ if and only if x = e. Prove that every $g \in G$ can be represented as $g = x^{-1}xT$ for some $x \in G$.

Proof. Let us define a mapping $\phi: G \to G$ by $\phi(x) = x^{-1}(xT)$. Note that if $x^{-1}(xT) = y^{-1}(yT)$, we have $yx^{-1} = (yx^{-1})T$ implying x = y. Thus, ϕ is in fact an injection. Now by Pigeonhole Principle, we have ϕ a bijection. Hence, every $g \in G$ can be represented as $g = x^{-1}xT$ for some $x \in G$.

11. Let G be a finite group, T an automorphism of G with the property that xT = x if and only if x = e. Suppose further that $T^2 = I$. Prove that G must be abelian.

Proof. Let $g \in G$. Then there is a $x \in G$ such that $g = x^{-1}xT$. Consequently, $g^{-1} = (x^{-1}xT)^{-1} = (x^{-1})Tx$. Also, $gT = (x^{-1}xT)T = (x^{-1})Tx$. Thus, we have $gT = g^{-1}$ for all $g \in G$. Now, for any $x, y \in G$,

$$xyx^{-1}y^{-1} = xy(xT)(yT) = xy \cdot (xy)T = xy(xy)^{-1} = xyy^{-1}x^{-1} = e \implies xy = yx.$$

Hence
$$G$$
 is abelian.

12. Let G be a finite group and suppose the automorphism T sends more than three-quarters of the elements of the elements of G onto their inverses. Prove that $xT = x^{-1}$ for all $x \in G$ and that G is abelian.

Proof. We shall denote the number of elements of a finite set S by |S|. We define a set A by

$$A = \{ x \in G : xT = x^{-1} \}.$$

Choose $a \in A$. Let $K = A \cap a^{-1}A$. Observe that

$$|K| = |A \cap a^{-1}A| = |A| + |a^{-1}A| - |A \cup a^{-1}A|$$
$$> \frac{3}{4}|G| + \frac{3}{4}|G| - |G| = \frac{1}{2}|G|$$

so that $|K|>\frac{1}{2}|G|$. Let $k\in K$. Then we have $T(ak)=a^{-1}k^{-1}=k^{-1}a^{-1}$ so that $k\in N(a)$. Hence, $K\subset N(a)$. But from $|K|>\frac{1}{2}|G|$, by Lagranges theorem, N(a)=G. Clearly, $a\in Z(G)$. But since this holds for every $a\in A$, we have that $|Z(G)|>\frac{3}{4}|G|\Longrightarrow Z(G)=G$. Hence, G is abelian. \square

13. In Problem 12, can you find an example of a finite group which is non-abelian and which has an automorphism which maps exactly three-quarters of the elements of G onto their inverses?

Proof. Let G be the group of quaternions. Define $T: G \to G$ by xT = -x. Clearly T is an automorphism in G. Note that for $\pm i, \pm j, \pm k, T$ sends those to their inverses. But 1T = -1, -1T = 1. Hence, T is an automorphism sending exactly third quarters of G to their inverses but G is non-abelian.

14. Prove that every finite group having more than two elements has a nontrivial automorphism

Proof. Let us first consider non-abelian case. Since $\mathscr{I}(G) \simeq \frac{G}{Z(G)}$, We know that there exits a $g \in G$ such that $T_g \neq I$. Suppose G is an abelian group with not every elements is of its self inverses. Define $T: G \to G$ by $gT = g^{-1}$. Clearly T is an automorphism with $x_0 \neq x_0^{-1}$ for some $x_0 \in G$. Thus, $T \neq I$. Now if G is an abelian group with every elements is of its self inverses. Choose any $a, b \neq e \in G$. We define a mapping $T: G \to G$ by interchanging a and b while keeping rest of the elements fixed. Then T is also a non-trivial automorphism. Hence, we have proved that every finite group having more than two elements has a nontrivial automorphism.

15. Let G be a group of order 2n. Suppose that half of the elements of G are of order 2, and the other half form a subgroup H of order n. Prove that H is of odd order and is an abelian subgroup of G.

Proof. Suppose H is of even order. Then H must contain an element of order 2, which is a contradiction. Thus, H is of odd order. Now, since [G:H]=2, H is normal in G. Thus, we can represent G as $G=H \coprod xH$ for some $x^2=e$. Since we know that the elements of G-H are of order 2, $(xh)^2=e$ for all $h \in H$. Now choose $a,b \in H$. Consequently,

$$ab = axx^{-1}b = xa^{-1}b^{-1}x = x(ba)^{-1}x = x^{2}(ba) = ba$$

so that H is abelian. Hence proved.

16. Let $\phi(n)$ be the Euler ϕ -function. If a > 1 is an integer, prove that $n \mid \phi(a^n - 1)$.

Proof. Consider the group $G = U_{a^n-1}$. Then the number of elements in G is given by $\phi(a^n-1)$. Note that $\gcd(a^k,a^n-1)=1$ for any $k \in Z$. Also, note that $(a)=\{a^k: k=0,1,\cdots n-1\}$, a subgroup of G generated by a, is of order n. Thus, by Lagranges theorem, $n \mid \phi(a^n-1)$.

17. Let G be a group and Z be the center of G. If T is any automorphism of G, prove that $(Z)T \subset Z$.

Proof. Let $g \in G, z \in Z$. Since $g_0T = g$ for some $g_0 \in G$,

$$g(zT) = (g_0T)(zT) = (g_0z)T = (zg_0)T = (zT)(g_0T) = (zT)g.$$

Hence $(Z)T \subset Z$.

18. Let G be a group and T an automorphism of G. If, for $a \in G$, $N(a) = \{x \in G : xa = ax\}$, prove that N(aT) = (N(a))T.

Proof. Let $x \in N(aT)$. Then $x(aT) = (aT)x \iff x_0a = ax_0$ for some x_0 such that $x_0T = x$. Thus, $x = x_0T \in (N(a))T$. Now suppose $y = xT \in (N(a))T$. Then by definition, xa = ax, so that y(aT) = (aT)y. Hence, $y \in N(aT)$. Therefore, we conclude that N(aT) = (N(a))T.

19. Let G be a group and T an automorphism of G. If N is a normal subgroup of G such that $(N)T \subset N$, show how you could use T to defined an automorphism of G/N.

Proof. This problem quite faulty; We need further assumption that $[G:N] < \infty$.

20. Use the discussion following Lemma 2.8.3. to construct a) a non-abelian group of order 55.

Solution. Define G = (a), $a^{11} = e$, $\phi : a^i \mapsto a^{3i}$. Then $\phi^5 = I$ so that ϕ is an automorphism of G of order 5. Let x be a symbol where we formally subject to the following condition: $x^5 = e$, $x^{-1}a^ix = \phi(a^i) = a^{3i}$. Consider

$$G' = \{x^i a^j : i = 0, 1, \dots, 4, j = 0, 1, \dots 10\},\$$

where $x^i a^j = x^k a^l \iff i \equiv k \pmod{5}, j \equiv l \pmod{11}$ and $x^5 = a^{11} = e, x^{-1} a x = a^3$. Then G' is a non-abelian group of order 55.

b) a non-abelian group of order 203.

Solution. Define $G=(a), a^{29}=e, \phi: a^i\mapsto a^{-4i}$. Then $\phi^7=I$ so that ϕ is an automorphism of G of order 7. Now apply the method established for the above problem a). In this way, we obtain a non-abelian group of order 203.

21. Let G be the group of order 9 generated by elements a, b, where $a^3 = b^3 = e$. Find all the automorphisms of G.

Solution. First, we know that the group of order 9 is abelian. Now, suppose ϕ is an automorphism of G. Since the order of element is preserved under automorphisms and every elements in G is of order 3, there are 8 possibilities for the values of $\phi(a)$ and remaining 7 for the values of $\phi(b)$. But not every 56 mappings is automorphism. Note that we have to remove out the case where $\phi(ab) = e$. Suppose $\phi(ab) = \phi(a)\phi(b) = a^pb^qa^rb^s = a^{p+r}b^{q+s}$. $\phi(ab) = e \iff p+r \equiv 0 \pmod{3}, q+s \equiv 0 \pmod{3}$, where not both p,q are zero at the same time and similarly for r,s. The possible ordered pair of p,q,r,s for $\phi(ab) = e$ are:

$$(0,1,0,2), (0,2,0,1), (1,1,2,2), (1,2,2,1)$$

 $(1,0,2,0), (2,1,1,2), (2,2,1,1), (2,0,1,0).$

Hence, there are 48 automorphisms in G.