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Problems in the Section 2.8.

1. Are the following mappings automorphism of their respective groups?
a) G a group of integers under addition, T : x→ −x.

Solution. T is clearly a homomorphism since (x + y)T = −(x + y) = −x − y = xT + yT .
Surjection and injection are clear as (−x)T = x for all x ∈ Z and −x = −y implies x = y.
Hence, T is an automorphism.

b) G group of positive reals under multiplication, T : x→ x2.

Solution. T is an automorphism. Note that (xy)T = (xy)2 = x2y2 = (xT )(yT ) so that T
is a homomorphism. It has the trivial kernel. Hence, injective. Moreover,

√
xT = x for

any x > 0 in reals. Thus, T is bijective and hence an automorphism.

c) G cyclic group of order 12, T : x→ x3.

Solution. Let G = (a) for some a ∈ G. T is not an automorphism since aT = a3 = a5T
but a 6= a5.

d) G is the group S3, T : x→ x−1.

Solution. T is not an automorphism since (xy)T = y−1x−1 6= x−1y−1 = xTyT for any
order 2 element x and any order 3 element y.

2. Let G be a group, H a subgroup of G, T an automorphism of (H)T = {hT : h ∈ H}.
Prove (H)T is a subgroup of G.

Proof. Let h1T, h2T ∈ (H)T . Then h1T ·h2T = (h1h2)T ∈ (H)T and (h−11 )T = (h1T )−1 ∈
(H)T . These facts imply that (H)T is a subgroup of G.

3. Let G be a group, T an automorphism of G, N a normal subgroup of G. Prove that
(N)T is an normal subgroup of G.
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Proof. Clearly, (N)T is a subgroup. Now, since T is an automorphism, for any g ∈ G,
g0T = g with some g0 ∈ G. Choose nT ∈ (N)T . Then g(nT )g−1 = g0TnTg

−1
0 T =

(g0ng
−1
0 )T ∈ (N)T implying (N)T is normal in G.

4. For G = S3, prove that G ' I (G)

Proof. Note that for G = S3, Z(G) = {e}. Using G/Z(G) ' I (G), we have G ' I (G).

5. For any group G prove that I (G) is a normal subgroup of A (G) (the subgroup
A (G)/I (G) is called the group of outer automorphisms of G.

Proof. Let T ∈ A (G) and Tg ∈ I (G). For all x ∈ G,

(x)TTgT
−1 = (xT )TgT

−1 = (g(xT )g−1)T−1 = ((g0)T (xT )(g−10 )T )T−1 = g0xg
−1
0 = xTg0 ∈ I (G)

for some g0 ∈ G. Hence, I (G) is normal in A (G).

6. Let G be a group of order 4, G = {e, a, b, ab}, a2 = b2 = e, ab = ba. Determine A (G).

Proof. Let us consider G as a set of 4 elements. Then the number of bijections between the
same G are given by 4! = 24. But among these, since we seek a homomorphism, identity
element e must be mapped to e. Thus we are left out with 4!/4 = 3! choices. Listing the
candidates for the automorphisms, we have

e =

(
e a b ab
e a b ab

)
, φ =

(
e a b ab
e b a ab

)
, ψ =

(
e a b ab
e b ab a

)
,(

e a b ab
e a ab b

)
,

(
e a b ab
e ab a b

)
,

(
e a b ab
e ab b a

)
.

Note that φ2 = e, ψ3 = e, and

ψ · φ =

(
e a b ab
e a ab b

)
, φ · ψ =

(
e a b ab
e ab a b

)
, ψ2 · φ =

(
e a b ab
e ab b a

)
.

Now we check that 6 bijections are in fact, homomorphisms. Observe that

e(ab) = ab = e(a)e(b), φ(ab) = ab = ba = φ(a)φ(b),

ψ(ab) = a = b2a = b(ba) = b(ab) = ψ(a)ψ(b),

(ψφ)(ab) = b = a2b = a(ab) = (ψφ)(a)(ψφ)(b),

(φψ)(ab) = b = ba2 = (ba)a = (ab)a = (φψ)(a)(φψ)(b),

(ψ2φ)(ab) = a = ab2 = (ab)b = (ψ2φ)(a)(ψ2φ)(b).

Therefore, these 6 bijections are the whole automorphisms ofG. Moreover, A (G) ' S3.
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7. a) A subgroup C of G is said to be a characteristic subgroup of G if (C)T ⊂ C for all
automorphisms T of G. Prove a characteristic subgroup of G must be a normal subgroup
of G.

Proof. Let g ∈ G and T ∈ A (G). Choose c ∈ C. Note that gcg−1T = gTcTg−1T =
g0(cT )g−10 = (cT )Tg0 ∈ C for some g0 ∈ G. Hence, C is normal in G.

b) Prove that the converse of a) is false.

Proof. Consider the group G defined in the Problem 6(Klein-4 group). Let N = {e, a}.
Clearly, N is normal in G. But for φ ∈ A (G), aφ = b 6∈ N . This implies N is not a
characteristic subgroup of G.

8. For any group G, prove that the commutator subgroup G′ is a characteristic subgroup
of G.

Proof. Let a, b ∈ G. It is enough to show that aba−1b−1 is closed under automorphism T
in G′. Note that

aba−1b−1T = (aT )(bT )(a−1T )(b−1T ) ∈ G′.

Hence, G′ is a characteristic subgroup of G.

9. If G is a group, N a normal subgroup of G, M a characteristic subgroup of N , prove
that M is a normal subgroup of G.

Proof. Let g ∈ G. Define a mapping φg : N → N,n 7→ gng−1. Since N is normal in G,
this is well defined automorphism in N . Now, choose m ∈ M . Since mT ∈ M , so does
mφg = gmg−1 ∈M . Thus, M is normal in G.

10. Let G be a finite group, T an automorphism of G with the property that xT = x for
x ∈ G if and only if x = e. Prove that every g ∈ G can be represetned as g = x−1xT for
some x ∈ G.

Proof. Let us define a mapping φ : G → G by φ(x) = x−1(xT ). Note that if x−1(xT ) =
y−1(yT ), we have yx−1 = (yx−1)T implying x = y. Thus, φ is in fact an injection. Now
by Pigeonhole Principle, we have φ a bijection. Hence, every g ∈ G can be represented as
g = x−1xT for some x ∈ G.

11. Let G be a finite group, T an automorphism of G with the property that xT = x if
and only if x = e. Suppose further that T 2 = I. Prove that G must be abelian.
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Proof. Let g ∈ G. Then there is a x ∈ G such that g = x−1xT . Consequently, g−1 =
(x−1xT )−1 = (x−1)Tx. Also, gT = (x−1xT )T = (x−1)Tx. Thus, we have gT = g−1 for all
g ∈ G. Now, for any x, y ∈ G,

xyx−1y−1 = xy(xT )(yT ) = xy · (xy)T = xy(xy)−1 = xyy−1x−1 = e =⇒ xy = yx.

Hence G is abelian.

12. Let G be a finite group and suppose the automorphism T sends more than three-
quarters of the elements of the elements of G onto their inverses. Prove that xT = x−1 for
all x ∈ G and that G is abelian.

Proof. We shall denote the number of elements of a finite set S by |S|. We define a set A
by

A = {x ∈ G : xT = x−1}.

Choose a ∈ A. Let K = A ∩ a−1A. Observe that

|K| =
∣∣A ∩ a−1A∣∣ = |A|+

∣∣a−1A∣∣− ∣∣A ∪ a−1A∣∣
>

3

4
|G|+ 3

4
|G| − |G| = 1

2
|G|

so that |K| > 1

2
|G|. Let k ∈ K. Then we have T (ak) = a−1k−1 = k−1a−1 so that

k ∈ N(a). Hence, K ⊂ N(a). But from |K| > 1

2
|G|, by Lagranges theorem, N(a) = G.

Clearly, a ∈ Z(G). But since this holds for every a ∈ A, we have that |Z(G)| > 3

4
|G| =⇒

Z(G) = G. Hence, G is abelian.

13. In Problem 12, can you find an example of a finite group which is non-abelian and
which has an automorphism which maps exactly three-quarters of the elements of G onto
their inverses?

Proof. Let G be the group of quaternions. Define T : G → G by xT = −x. Clearly T
is an automorphism in G. Note that for ±i,±j,±k, T sends those to their inverses. But
1T = −1,−1T = 1. Hence, T is an automorphism sending exactly third quarters of G to
their inverses but G is non-abelian.

14. Prove that every finite group having more than two elements has a nontrivial auto-
morphism
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Proof. Let us first consider non-abelian case. Since I (G) ' G

Z(G)
, We know that there

exits a g ∈ G such that Tg 6= I. Suppose G is an abelian group with not every elements
is of its self inverses. Define T : G → G by gT = g−1. Clearly T is an automorphism
with x0 6= x−10 for some x0 ∈ G. Thus, T 6= I. Now if G is an abelian group with every
elements is of its self inverses. Choose any a, b 6= e ∈ G. We define a mapping T : G→ G
by interchanging a and b while keeping rest of the elements fixed. Then T is also a non-
trivial automorphism. Hence, we have proved that every finite group having more than
two elements has a nontrivial automorphism.

15. Let G be a group of order 2n. Suppose that half of the elements of G are of order 2,
and the other half form a subgroup H of order n. Prove that H is of odd order and is an
abelian subgroup of G.

Proof. Suppose H is of even order. Then H must contain an element of order 2, which is a
contradiction. Thus, H is of odd order. Now, since [G : H] = 2, H is normal in G. Thus,
we can represent G as G = H q xH for some x2 = e. Since we know that the elements of
G−H are of order 2, (xh)2 = e for all h ∈ H. Now choose a, b ∈ H. Consequently,

ab = axx−1b = xa−1b−1x = x(ba)−1x = x2(ba) = ba

so that H is abelian. Hence proved.

16. Let φ(n) be the Euler φ-function. If a > 1 is an integer, prove that n | φ(an − 1).

Proof. Consider the group G = Uan−1. Then the number of elements in G is given by
φ(an − 1). Note that gcd(ak, an − 1) = 1 for any k ∈ Z. Also, note that (a) = {ak : k =
0, 1, · · ·n−1}, a subgroup of G generated by a, is of order n. Thus, by Lagranges theorem,
n | φ(an − 1).

17. Let G be a group and Z be the center of G. If T is any automorphism of G, prove that
(Z)T ⊂ Z.

Proof. Let g ∈ G, z ∈ Z. Since g0T = g for some g0 ∈ G,

g(zT ) = (g0T )(zT ) = (g0z)T = (zg0)T = (zT )(g0T ) = (zT )g.

Hence (Z)T ⊂ Z.

18. Let G be a group and T an automorphism of G. If, for a ∈ G, N(a) = {x ∈ G : xa =
ax}, prove that N(aT ) = (N(a))T .

Proof. Let x ∈ N(aT ). Then x(aT ) = (aT )x ⇐⇒ x0a = ax0 for some x0 such that
x0T = x. Thus, x = x0T ∈ (N(a))T . Now suppose y = xT ∈ (N(a))T . Then by
definition, xa = ax, so that y(aT ) = (aT )y. Hence, y ∈ N(aT ). Therefore, we conclude
that N(aT ) = (N(a))T .
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19. Let G be a group and T an automorphism of G. If N is a normal subgroup of G such
that (N)T ⊂ N , show how you could use T to defined an automorphism of G/N .

Proof. This problem quite faulty; We need further assumption that [G : N ] <∞.

20. Use the discussion following Lemma 2.8.3. to construct a) a non-abelian group of order
55.

Solution. Define G = (a), a11 = e, φ : ai 7→ a3i. Then φ5 = I so that φ is an automorphism
of G of order 5. Let x be a symbol where we formally subject to the following condition:
x5 = e, x−1aix = φ(ai) = a3i. Consider

G′ = {xiaj : i = 0, 1, · · · , 4, j = 0, 1, · · · 10},

where xiaj = xkal ⇐⇒ i ≡ k (mod 5), j ≡ l (mod 11) and x5 = a11 = e, x−1ax = a3.
Then G′ is a non-abelian group of order 55.

b) a non-abelian group of order 203.

Solution. Define G = (a), a29 = e, φ : ai 7→ a−4i. Then φ7 = I so that φ is an automor-
phism of G of order 7. Now apply the method established for the above problem a). In
this way, we obtain a non-abelian group of order 203.

21. Let G be the group of order 9 generated by elements a, b, where a3 = b3 = e. Find all
the automorphisms of G.

Solution. First, we know that the group of order 9 is abelian. Now, suppose φ is an
automorphism ofG. Since the order of element is preserved under automorphisms and every
elements in G is of order 3, there are 8 possibilities for the values of φ(a) and remaining 7
for the values of φ(b). But not every 56 mappings is automorphism. Note that we have to
remove out the case where φ(ab) = e. Suppose φ(ab) = φ(a)φ(b) = apbqarbs = ap+rbq+s.
φ(ab) = e ⇐⇒ p+ r ≡ 0 (mod 3), q + s ≡ 0 (mod 3), where not both p, q are zero at the
same time and similarly for r, s. The possible ordered pair of p, q, r, s for φ(ab) = e are:

(0, 1, 0, 2), (0, 2, 0, 1), (1, 1, 2, 2), (1, 2, 2, 1)

(1, 0, 2, 0), (2, 1, 1, 2), (2, 2, 1, 1), (2, 0, 1, 0).

Hence, there are 48 automorphisms in G.
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