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Problems in the Section 2.7.

1. In the following, verify if the mappings defined are homomorphisms and in those cases
in which they are homomorphisms, determine the kernel.
a) G is a group of nonzero real numbers under multiplication, G = G,φ(x) = x2 all x ∈ G.

Solution. φ is a homomorphism. Note that φ(xy) = (xy)2 = x2y2 = φ(x)φ(y) in G. Let K
be the kernel of φ. x2 = 1 implies x = −1 or x = 1. Hence, K = {−1, 1} ' Z2.

b) G, G as in a), φ(x) = 2x

Solution. φ is not a homomorphism as φ(2 · 1) = 22 = 4 6= 8 = 22 · 21 = φ(2)φ(1).

c) G is the group of real numbers under addition, G = G, φ(x) = x+ 1 all x ∈ G.

Solution. φ is not a homomorphism as φ(2) = 3 6= 4 = 2 + 2 = φ(1) + φ(1).

d) G,G as in c), φ(x) = 13x for x ∈ G.

Solution. φ is a homomorphism. Note that φ(x+y) = 13(x+y) = 13x+13y = φ(x)+φ(y)
in G. Let K be the kernel of φ. Since 13x = 0 ⇐⇒ x = 0, K = {0}.

e) G be any abelian group, G = G, φ(x) = x5 all x ∈ G.

Solution. φ is a homomorphism. Note that φ(xy) = (xy)5 = x5y5 = φ(x)φ(y) in G. Let
K be the kernel. Sicen x5 = e ⇐⇒ x is of order 5 or x = e, K is the collection of all
elements of G of order 5.

2. Let G be any group, g a fixed elements in G. Define φ : G→ G by φ(x) = gxg−1. Prove
that φ is an homomorphism of G onto G.

Proof. Note that φ(xy) = g(xy)g−1 = (gxg−1)(gyg−1) = φ(x)φ(y) for all x, y ∈ G. Hence,
φ is a homomorphism. Suppose φ(x) = e. Equivalently, gxg−1 = e =⇒ x = e, so that
the kernel K of φ is (e). Thus, φ is an isomorphism(injection). Further, for all x ∈ G,
φ(g−1xg) = x, implying φ is onto. Therefore, φ is an onto isomorphism(automorphism).
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3. Let G be any finite abelian group of order o(G) and suppose the integer n is relatively
prime to o(G). Prove that every g ∈ G can be written as g = xn with x ∈ G.

Proof. Consider a mapping φ : G → G defined as φ(x) = xn. Note that φ(xy) = (xy)n =
xnyn = φ(x)φ(y) so that φ is a homomorphism. Suppose xn = e. Then since gcd(n, o(G)) =
1, nλ+ o(G)µ = 1 for some λ, µ ∈ Z, x = xnλ+o(G)µ = e, implying the kernel K of φ is (e),
so that φ is an isomorphism(injection). Now by Pigeonhole principle, as φ is an injection
from G to G, it is also onto. Therefore, φ is a bijection. This finishes the proof.

4. a) Given any group G and a subset U , let Û be the smallest subgroup of G which
contains U . Prove there is such a subgroup Û in G.

Proof. Let Û =
⋂

U⊂W≤G
W , intersection of all subgroups of G containing U . Clearly, Û

is a subgroup of G containing U . Let W ′ be another subgroup of G containing U . Then⋂
U⊂W≤G

W ⊂W ′, implying Û is the smallest subgroup of G containing U .

b) If gug−1 ∈ U for all g ∈ G, u ∈ U , prove that Û is a normal subgroup of G.

Proof. Note that every elements in Û can be represented as in the form of finite products
of U , raised to integer exponents. That is,

u ∈ Û ⇐⇒ u = uk11 u
k2
2 · · ·u

kn
n , ui ∈ U, ki ∈ Z, i = 1, 2, · · · , n,

Let u ∈ Û . Adopting the representation of u introduced above,

gug−1 = guk11 u
k2
2 · · ·u

kn
n g
−1

= (gu1g
−1)k1(gu2g

−1)k2 · · · (gung−1)kn

= (u′1)
k1(u′2)

k2 · · · (u′n)kn ∈ Û (∵ guig
−1 = u′i ∈ U)

for all g ∈ G. Hence, Û is normal in G.

5. Let U = {xyx−1y−1 : x, y ∈ G}. In this case Û is usually written as G′ and is called the
commutator subgroup of G.
a) Prove that G′ is normal in G.

Proof. Note that for all g, x ∈ G, (gxg−1)−1 = gx−1g−1 and hence

g(xyx−1y−1)g−1 = gx · (g−1g) · y · (g−1g) · x−1 · (g−1g) · y−1g−1

= (gxg−1)(gyg−1)(gx−1g−1)(gy−1g−1) ∈ U.

Now apply b) of the Problem 4. We see that G′ is normal in G.
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b) Prove that G/G′ is abelian.

Proof. For any a, b ∈ G, abG′ = baa−1b−1abG′ = ba(a−1b−1ab)G′ = baG′. Hence, G/G′ is
abelian.

c) If G/N is abelian, prove that G′ ⊂ N .

Proof. As G/N is abelian, abN = baN =⇒ a−1b−1ab ∈ N for all a, b ∈ G. Since
a−1b−1ab ∈ G′, and a, b arbitrary, G′ ⊂ N .

d) Prove that if H is a subgroup of G and G′ ⊂ H, then H is normal in G.

Proof. Note that ghg−1 = ghg−1h−1h = (ghg−1h−1)h ∈ H for all g ∈ G, h ∈ H. Hence, H
is normal in G.

6. If N,M are normal subgroups of G, prove that NM/M ' N/N ∩M .

Proof. NM is subgroup of G (Problem 3, Section 2.6). Now consider a mapping φ : N →
NM/M defined by φ(n) = nM . We show that φ is a homomorphism. Note that

φ(n1n2) = n1n2M = n1Mn2M = φ(n1)φ(n2)

so that φ is a homomorphism. Moreover, for any nM ∈ NM/M , φ(n) = nM so that φ
is onto. Now, we can apply isomorphism theorem. Note that for n ∈ N , φ(n) = M ⇐⇒
n ∈M , so that the kernel of φ is N ∩M . Hence,

N

N ∩M
' NM

M
.

7. Let V be the set of real numbers, and for a, b real, a 6= 0 let τab : V → V defined
by τab(x) = ax + b. Let G = {τab : a, b ∈ R, a 6= 0} and let N = {τ1b ∈ G}. Prove
that N is a normal subgroup of G and that G/N ' group of nonzero real numbers under
multiplication.

Proof. We know that N is normal in G, by applying Problem 23 of Section 2.6. Now, we
define a mapping φ : G → R − {0} by φ(τab) = a. Note that φ is a homomorphism since
for any non-zero a, c ∈ R, b, d ∈ R,

φ(τab · τcd) = φ(τac,ad+b) = a · c = φ(τab)φ(τcd).

Moreover, φ is cleary onto. Let K be the kernel of φ. Then the elements of k ∈ K
satisfies φ(k) = 1. But by the definition of N , we see that K is exactly N . Applying the
isomorphism theorem, we have G/N ' R− {0}.
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8. Let G be the dihedral group defined as the set of all formal symbols xiyj , i = 0, 1,
j = 0, 1, · · · , n− 1, where x2 = e, yn = e, xy = y−1x. Prove
a) The subgroup N = {e, y, y2, · · · , yn−1} is normal in G.

Proof. It it easy to see that N = (y), and hence, a cyclic subgroup of G. Moreover,
[G : N ] = 2, implying N is normal in G.

b) That G/N ' W , where W = {−1, 1} is the group under the multiplication of the real
numbers.

Proof. From o(G/N) = 2, we have G/N ' Z2 the only possible case. Hence, G/N '
{−1, 1} = W .

9. Prove that the center of a group is always a normal subgroup.

Proof. Note that any z ∈ Z(G) satisfies gzg−1 = z ∈ Z(G) for all g ∈ G. Hence Z(G) is
clearly normal in G.

10. Prove that a group of order 9 is abelian.

Proof. Let G be the group of order 9. Suppose there is an a ∈ G such that (a) = G, we
are done. If not, for all a ∈ G, (a) ( G. It is impossible that G to have no non-trivial
subgroup, otherwise G would be a group of prime order, contradicting that o(G) = 9. So,
we can find a subgroup (a) of order 3. Now, take b ∈ G − (a) and consider (b). The only
possible order of b is 3, hence (b) is a subgroup of order 3. Note that,

o((a) · (b)) =
o(a) · o(b)
o((a) ∩ (b))

and since (a)∩ (b) = (e), o((a)(b)) = 9 and hence (a)(b) = G. It is now possible to write G
as G = {e, a, a2, b, b2, ab, ab2, a2b, a2b2}. Now we investigate if which of the elements stated
initially, equals ba ∈ G. Observe that

ba 6= e, a, a2, b, b2 trivially,

ba = a2b =⇒ aba = b, (ba)3 = e =⇒ bababa = bab(aba) = bab2 =⇒ ba = b ⊥,
ba = ab2 =⇒ bab = a, (ba)3 = e =⇒ bababa = (bab)aba = a2ba =⇒ ba = a ⊥,
ba = a2b2 =⇒ (ab)2 = e ⊥,

hence the only possibility is ba = ab. This shows that G is abelian.

11. If G is a non-abelian group of order 6, prove that G ' S3.
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Proof. Since G is of even order, there exists an element a ∈ G such that a2 = e. Obviously,
there is no element of order 6, otherwise G would be a cyclic group. We claim that there
is an element b ∈ G of order 3. If not, every non-identity element in G would be order of
2, so that G is abelian, contradicting that G is non-abelian. Thus, there must an element
b of order 3. Since (a) ∩ (b) = (e), and from the equation

o((a) · (b)) =
o(a) · o(b)
o((a) ∩ (b))

,

we have that o((a)(b)) = 6 so that (a)(b) = G. Hence, G = {e, a, b, b2, ab, ab2}. We
investigate if which of in G equals b−1a. Clearly, b−1a 6= e, a, b, b2. Suppose b−1a = ab2.
Then ab = (bb−1) · ab = b(ab2)b = ba implying G is abelian, hence a contradiction. The
only remaining possibility is b−1a = ab. But this implies that G = {e, a, b, b2, ab, ab2}. This
groupG with an operation property ab = b−1a is exactly isomorphic to the symmetric group
S3. Therefore, G ' S3.

12. If G is abelian and if N is any subgroup of G, prove that G/N is abelian.

Proof. Since G is abelian, N is normal in G. Moreover, for any a, b ∈ G, (ab)N = (ba)N .
Thus, G/N is abelian.

13. Let G be the dihedral group defined in Problem 8. Find the center of G.

Proof. We consider the case of n > 2, otherwise the center of G is G itself trivially. By
the result of the Problem 17 in Section 2.6, if the order of n is odd, Z(G) = (e), and if the
order of n is even, {e, yn/2} ⊂ Z(G). We find if any other elements xiyj of G is in Z(G),
for the order of n is even. In general, elements of the form xyk cannot be in the center as
if

(y−1x)xyk(xy) = yk−1y−1x = yk−2x,

but k ≡ k − 2 (mod n) will not hold if n > 2. Thus, we consider only the elements of the
form yk. Also note that

(xy)yk(y−1x) = xykx,

so that if yk = xykx, ykx = xyk = y−kx ⇐⇒ k = 0, n/2. Hence, the only possible
elements of the form yk are e, yn/2. This shows that the center of G is {e, yn/2} exactly,
whenever n > 2 and n is of even order. Summarising,

Z(G) =


G, o(G) = 2, 4

(e), n > 2, n ≡ 1 (mod 2)

{e, yn/2}, n > 2, n ≡ 0 (mod 2).
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14. Let G be as in Problem 13. Find G′, the commutator subgroup of G.

Proof. Note that y2k = ykxy−kx so that y2k ∈ G′. Equivalently, (y2) ⊂ G′. Note that
(y2) = N if n is odd and (y2) = {e, y2, · · · , yn−2} if n is even. Moreover, (y2) is normal
in G. Hence, o(G/(y2)) = 2 if n is odd and o(G/(y2)) = 4 if n is even. Thus, G/(y2) is
abelian. Applying the result of Problem 5 c), G′ ⊂ (y2). Therefore, G′ = (y2).

15. Let G be the group of non-zero complex numbers under multiplication and let N be
the set of complex numbers of absolute value 1 (that is, a+ bi ∈ N if a2 + b2 = 1). Show
that G/N is isomorphic to the group of all positive real numbers under multiplication.

Proof. Let us define a mapping φ : G → R− {0} by φ(z) = |z|. Clearly, φ is a homomor-
phism since φ(zw) = |zw| = |z| |w| = φ(z)φ(w). Now for any k > 0 ∈ R, φ(k + 0i) = k
so that φ is onto. We now investigate the kernel of φ. Obviously, it is set of all nonzero
complex numbers of absolute value 1, that is, exactly, N . Now by isomorphism theorem,
G/N ' R− {0}.

16. Let G be the group of all nonzero complex numbers under multiplication and let G

be the group of all real 2 × 2 matrices of the form

(
a −b
b a

)
, where not both a and b

are 0, under matrix multiplication. Show that G and G are isomorphic by exhibiting an
isomorphism of G onto G.

Proof. Define a mapping φ : G→ G by φ(a+ bi) =

(
a −b
b a

)
. φ is a homomorphism since

φ((a+ bi) · (c+ di)) = φ(ac− bd+ (ad+ bc)i)

=

(
ac− bd ad+ bc
ad+ bc ac− bd

)
=

(
a −b
b a

)
·
(
c −d
d c

)
= φ(a+ bi)φ(c+ di).

Also, φ is clearly one-one and onto. Hence, φ yields an isomorphism of G onto G.

17. Let G be the group of real numbers under addition and let N be the subgroup of
G consisting of all integers. Prove that G/N is isomorphic to the group of all complex
numbers of absolute value 1 under multiplication.

Proof. For convenience of the proof, we denote S1 to be the group of all complex numbers
of absolute value 1. We define a mapping φ : G→ S1 by φ(g) = e2πgi, where e is the euler
constant, i is the imaginary number. We show φ is a homomorphism. Note that

φ(g + h) = e2π(g+h)i = e2πgi · e2πhi = φ(g)φ(h)
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so that φ is homomorphism. Moreover, from that fact that arbitrary elements of S1 is
expressible in the form e2πki, φ is onto. So, we can apply the isomorphism theorem. We
now investigate the kernel of φ. Since e2πki = 1 ⇐⇒ k ∈ Z, N is exactly the kernel of φ.
Hence, G/N ' S1.

18. Let G be the group of all real 2× 2 matrices

(
a b
b a

)
, with ad− bc 6= 0, under matrix

multiplication, and let

N =

{(
a b
b a

)
∈ G : ad− bc = 1

}
.

Prove that N ⊃ G′, the commutator subgroup of G.

Proof. It is sufficient to check that the determinant of commutator is 1. Note that
det(ABA−1B−1) = det(A) det(B) det(A−1) det(B−1) = 1 for all A,B ∈ G. Hence, G′ ⊂
N .

19. In Problem 18 show, in fact, that N = G′.

Proof. Note that for any x ∈ R,(
1 x
0 1

)
=

(
2 0
0 1

)(
1 x
0 1

)(
2 0
0 1

)−1(
1 x
0 1

)−1
,(

1 0
x 1

)
=

(
1
2 0
0 1

)(
1 0
x 1

)(
1
2 0
0 1

)−1(
1 0
x 1

)−1
,(

x 0
0 x−1

)
=

(
x 0
0 1

)(
0 1
1 0

)(
x 0
0 1

)−1(
0 1
1 0

)−1
so that

(
1 x
0 1

)
,

(
1 0
x 1

)
and

(
x 0
0 x−1

)
are commutators. Also,

(
0 1
−1 0

)
=

(
1 2
0 1

)(
−1 0
1 2

)(
1 2
0 1

)−1(−1 0
1 2

)−1
so that

(
0 1
−1 0

)
is also a commutator. We can also check that

(
a b
c d

)
=

(
1 b

a
0 1

)(
1 c
0 1

)(
a 0
0 1

a

)
for a 6= 0. If a = 0, then it is must that b 6= 0 and(

0 b
c d

)
=

(
0 1
−1 0

)(
1 −d

b
0 1

)(
1
b 0
0 b

)
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so that in either cases,

(
a b
c d

)
is a product of commutators. Therefore, N ⊂ G′ and hence,

N = G′.

20. Let G be the group of all real 2× 2 matrices of the form

(
a b
0 d

)
, where ad 6= 0, under

matrix multiplication. Show that G′ is precisely the set of all matrices of the form

(
1 x
0 1

)
.

Proof. Let N be the set of all matrices of the form

(
1 x
0 1

)
. Then from the Problem 21 of

section 2.6, We have that N is normal subgroup of G and G/N is abelian, so that G′ ⊂ N .

Now, take

(
1 x
0 1

)
∈ N . Just like we have done in Problem 19,

(
1 x
0 1

)
=

(
2 0
0 1

)(
1 x
0 1

)(
2 0
0 1

)−1(
1 x
0 1

)−1
,

hence a commutator of G. Hence, N ⊂ G′. Therefore, N = G′.

21. Let S1 and S2 be two sets. Suppose that there exists a one-to-one mapping ψ of S1
into S2. Show that there exists an isomorphism A(S1) into A(S2), where A(S) mean the
set of all one-to-one mapping of S onto itself.

Proof. Note that ψ is one-to-one. Hence, we define g : ψ(S1)→ S1 by g(y) = ψ−1|ψ(S1)(y).
Consequently, g ◦ ψ = idS1 . Now we define a mapping f : A(S1)→ A(S2) by

f(φ)(y) =

{
ψ ◦ φ ◦ g(y), if y ∈ ψ(S1),

idS2(y), else

We see that f(φ) ∈ A(S2). Moreover, it is a homomorphism since

f(φ1 ◦ φ2) =

{
ψ ◦ φ1φ2 ◦ g(y) = (ψ ◦ φ1 ◦ g) ◦ (ψ ◦ φ2 ◦ g)(y), if y ∈ ψ(S1),

idS2(y), else

= f(φ1)f(φ2)

and also one-one clearly. Hence, we have exhibited an isomorphism(monomorphism) of
A(S1) to A(S2).
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