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Problems in the Section 2.6.

1. If H is a subgroup of G such that the product of two right cosets of H in G is again a
right coset of H in G, prove that H is normal in G.

Proof. Consider the product of Hg and Hg−1. Consequently, HgHg−1 = Hc for some
c ∈ G. As egeg−1 = e = hc for some h ∈ H, c ∈ H. Therefore, HgHg−1 = H, implying
gHg−1 = H. Hence H is normal in G.

2. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup
of G.

Proof. We can represent the coset decomposition of G in two different ways. That is,

G = H q xH, G = H qHx

for some x 6∈ H. This forces us that xH = Hx, hence H is normal in G.

3. If N is a normal subgroup of G and H is any subgroup of G, prove that NH is a
subgroup of G.

Proof. Let nh, n′h′ ∈ NH. Consequently,

nh · n′h′ = nhn′h−1hh′ = n(n′′)hh′ ∈ NH

and

(nh)−1 = h−1n−1 = h−1n−1hh−1 = n′h−1 ∈ NH.

Hence, NH is a subgroup of G.

4. Show that the intersection of two normal subgroups of G is a normal subgroup of G.
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Proof. Let N and M be the two normal subgroups of G. We know that

g(N ∩M)g−1 = gNg−1 ∩ gMg−1 = N ∩M.

Hence, N ∩M is normal in G.

5. If H is a subgroup of G and N is a normal subgroup of G, show that H ∩N is a normal
subgroup of H.

Proof. Let g ∈ H ∩N . Then for any h ∈ H, hgh−1 ∈ H since g ∈ H, and hgh−1 ∈ H since
g ∈ N and N is normal in G. Thus, hgh−1 ∈ H ∩N , and H ∩N is normal in H.

6. Show that every subgroup of abelian group is normal.

Proof. Let H be a subgroup of an abelian group G. Then for any g ∈ G, h ∈ H, ghg−1 =
gg−1h = h ∈ H implying H is normal.

7. Is the converse of Problem 6 true? If yes, prove it, if no, give an example of a non-abelian
group all of whose subgroups are normal.

Proof. Converse of Problem 6 is False. Consider the group of quaternions, G = {±1,±i,±j,±k}.
There are 4 non-trivial subgroups : {±1,±i}, {±1,±j}, {±1,±k} and {±1}. These are
all normal in G, but G is not abelian since i and j does not commute.

8. Give an example of a group G, subgroup H, and an element a ∈ G such that aHa−1 ⊂ H
but aHa−1 6= H.

Proof. Let G be the multiplicative group of 2 × 2 real matrices. Consider the subgroup

H =

((
1 1
0 1

))
=

{(
1 n
0 1

)
: n ∈ Z

}
of G. Take g =

(
2 0
0 1

)
∈ G. Then

gHg−1 =

{(
1 2n
0 1

)
: n ∈ Z

}
⊂ H

but gHg−1 6= H.

9. Suppose H is the only subgroup of order o(H) in the finite group G. Prove that H is a
normal subgroup of G.

Proof. Note that for all g ∈ G, gHg−1 is a subgroup of G and o(gHg−1) = o(H). Therefore,
gHg−1 = H for all g ∈ G and hence H is normal in G.

10. If H is a subgroup of G, let N(H) = {g ∈ G : gHg−1 = H}. Prove
a) N(H) is a subgroup of G.
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Proof. Let a, b ∈ N(H). Consequently, (ab)H(ab)−1 = a(bHb−1)a−1 = aHa−1 = H so
that ab ∈ N(H). Also, aHa−1 = H =⇒ H = a−1Ha so that a−1 ∈ H. Hence N(H) is a
subgroup of G.

b) H is normal in N(H).

Proof. It is trivial by the definition of N(H).

c) If H is a normal subgroup of K in G, then K ⊂ N(H) (that is, N(H) is the largest
subgroup of G in which H is normal.

Proof. Let k ∈ K. Then kHk−1 = H implying k ∈ N(H). Hence K ⊂ N(H).

d) H is normal in G if and only if N(H) = G.

Proof. It is clear that N(H) ⊂ G. So, we show that the other side of inclusion holds if H
is normal in G. But this is also trivial to check since H is normal in G, gHg−1 = H for all
g ∈ G and hence g ⊂ N(H). Thus, N(H) = G. Moreover, if N(H) = G, this itself implies
that gHg−1 = H for all g ∈ G and so that H is normal in G.

11. If N and M are normal subgroups of G, prove that NM is also a normal subgroup of
G.

Proof. Note that for all g ∈ G,

g(NM)g−1 = (gNg−1)(gMg−1) = NM

so that NM is a normal subgroup of G.

12. Suppose that N and M are two normal subgroups of G and that N ∩M = (e). Show
that for any n ∈ N,m ∈M , nm = mn.

Proof. Let n ∈ N,m ∈ M . Note that nm = (mm−1)nm = m(m−1nm) = mn′ for some
n′ ∈ N . We shall show that n′ is, in fact, equals n exactly. Observe that

nm(n′)−1 = m =⇒ nmn−1n(n′)−1 = m

=⇒ m′n(n′)−1 = m (for some m′ ∈M)

=⇒ n(n′)−1 = (m′)−1m ∈M
=⇒ n = n′ (∵ N ∩M = (e)).

Hence, nm = mn for all n ∈ N,m ∈M .

13. If a cyclic subgroup T of G is normal in G, then show that every subgroup of T is
normal in G.
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Proof. Since T is cyclic, T = (a) for some a ∈ G. Let H be a subgroup of T . Since H is also
cyclic, H = (ak) for some integer k ≤ 0. Choose an element (ak)h = akh ∈ H. Then for all
g ∈ G, gag−1 ∈ T . Let gag−1 = al. Further, gakhg−1 = (gag−1)kh = (al)kh = (ak)lh ∈ H.
This shows that H is normal in G.

14. Prove, by an example, that we can find three groups E ⊂ F ⊂ G, where E is normal
in F , F is normal in G, but E is not normal in G.

Proof. Let G = S4, F = {id, (12)(34), (13)(24), (14)(23)}, E = ((12)(34)). F is normal in
G as for any conjugate of elements of the form (a, b)(c, d) results out with the same. And
also [F : E] = 2, E is normal in F . But E is clearly not normal in G.

15. If N is normal in G and a ∈ G is of order o(a), prove that the order, m, of Na in G/N
is a divisor of o(a).

Proof. Let k = o(a). If m - k, then k = mq + r for some integer q, r such that 0 ≤ r < m.
Note that am ∈ N and ak = e. Consequently,

ak = amq+r = (am)q · ar =⇒ ar ∈ N.

But since m is the order of Na in G/N and r < m, this is a contradiction.

16. If N is a normal subgroup in the finite group such that iG(N) and o(N) are relatively
prime, show that any element x ∈ G satisfying xo(N) = e must be in N .

Proof. Since gcd(iG(N), o(N) = 1, iG(N)λ + o(N)µ = 1 for some integers λ, µ ∈ Z. Note
that xiG(N) ∈ N . Consequently,

x = xiG(N)λ+o(N)µ = xiG(N)λ ∈ N.

17. Let G be defined as all formal symbols xiyj , i = 0, 1, j = 0, 1, 2, · · · , n − 1 where we
assume

xiyj = xi
′
yj

′
if and only if i = i′, j = j′

x2 = yn = e, n > 2

xy = y−1x

a) Find the form of the product (xiyj)(xkyl) as xαyβ.
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Proof. Using the fact that xym = y−mx, we have the following:

(xiyj)(xkyl) =


yj+l (mod n), i, k ≡ 0 (mod 2)

xyj+l (mod n), i ≡ 1, k ≡ 0 (mod 2)

xyl−j (mod n), i ≡ 0, k ≡ 1 (mod 2)

yl−j (mod n), i, k ≡ 1 (mod 2).

In an ONE-line presentation, we have:

(xiyj)(xkyl) = xi+k (mod 2)y((−1)
k (mod 2)j+l) (mod n).

b) Using this, prove that G is a non-abelian group of order 2n.

Proof. In general, if n > 2, y−1 6= y. Since xy = y−1x, yx 6= y−1x implying xy 6= yx.
Hence G is a non-abelian group of order 2n.

c) If n is odd, prove that the center of G is (e), while if n is even, the center of G is larger
than (e).

Proof. We make a case-by-case investigation. First, for the elements of the form xym,
m > 1, note that x(xym)x−1 = xxymx = ymx = xy−m. But since n is odd, Suppose that
xym = xy−m. It is must then that 2m ≡ 0 (mod n), implying n is even thereby yielding
a contradiction. Now consider the elements of the form ym. Also, xymx = y−m. Suppose
that ym = y−m, similarly above, n must be even, contradiction. Finally, we consider x.
Then y−1xy = xy2. But for n > 2, y2 6= e. Hence, xym, ym, x(m > 1) are not in the center
of G if n > 2 is odd. Thus, Z(G) = (e).
Now suppose n > 2 is even. Then it is easy to see that yn/2 ∈ Z(G). Hence, Z(G) ) (e).

18. Let G be a group in which, for some integer n > 1, (ab)n = anbn for all a, b ∈ G. Show
that
a) G(n) = {xn : x ∈ G} is a normal subgroup of G.

Proof. We first show that G(n) is a subgroup of G. Let an, bn ∈ G(n). Then anbn = (ab)n ∈
G(n). Also, (an)−1 = (a−1)n ∈ G(n). Hence, G(n) is a subgroup of G. It is also normal in
G, as, for all g ∈ G, an ∈ G(n), gang−1 = (gag−1)n ∈ G(n).

b) G(n−1) = {xn−1 : x ∈ G} is a normal subgroup of G.

Proof. Note that an−1bn−1 = (ba)n−1. From this, we see that G(n−1) is a subgroup of G.
Normality is clear, since for any g ∈ G, gan−1g−1 = (gag−1)n−1 ∈ G(n−1).
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19. Let G be as in Problem 18. Show
a) an−1bn = bnan−1 for all a, b ∈ G.

Proof. From

(ba)n−1 = an−1bn−1, (ab)n−1 = bn−1an−1,

we have

an−1bn = an−1bn−1b = (ba)n−1b = b(ab)n−1 = bbn−1an−1 = bnan−1

for all a, b ∈ G.

b) (aba−1b−1)n(n−1) = e for all a, b ∈ G

Proof. Note that

an(n−1)bn(n−1) = (an−1bn−1)n = (an−1bnb−1)n

= (bnan−1b−1)n = bn
2
(an)n−1(b−1)n

= bn
2
(b−1)n(an)n−1 = bn(n−1)an(n−1)

implying

an(n−1)bn(n−1) · (a−1)n(n−1)(b−1)n(n−1) = (aba−1b−1)n(n−1) = e.

20. Let G be a group such that (ab)p = apbp for all a, b ∈ G, where p is a prime number.
Let S = {x ∈ G : xp

m
= e for some m depending on x }. Prove

a) S is a normal subgroup of G.

Proof. We first prove that S is a subgroup of G. First, we note that (ab)p
n

= ap
n
bp

n
. This

can be shown easily by induction process. Suppose a, b ∈ S, where ap
n

= e, bp
m

= e for
some n,m ∈ Z. Then

(ab)p
mn

= ap
mn
bp

mn
= (ap

n
)m(bp

m
)n = e

so that ab ∈ S. Also, (a−1)p
n

= (ap
n
)−1 = e. Hence, S is a subgroup of G. Normality is

also clear, since for all g ∈ G, (gag−1)p
n

= gap
n
g−1 = e implying gag−1 ∈ S.

b) If G = G/S and if x ∈ G is such that xp = e then x = e.

Proof. Note that xp = e implies xp ∈ S. Equivalently, (xp)p
k

= e for some k ∈ Z. In fact,

(xp)p
k

= xp
k+1

= e =⇒ x ∈ S, so that x = e.
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21. Let G be the set of all real 2 × 2 matrices

(
a b
0 d

)
where ad 6= 0 under matrix

multiplication. Let N =

{(
1 b
0 1

)}
. Prove that

a) N is a normal subgroup of G

Proof. Let g =

(
a b
0 d

)
∈ G, n =

(
1 n
0 1

)
∈ N . Then

gng−1 =

(
a b
0 d

)(
1 n
0 1

)(
1
a − b

ad
0 1

d

)
=

(
1 an

d
0 1

)
∈ N

so that N is normal in G.

b) G/N is abelian.

Proof. Let g1 =

(
a b
0 d

)
∈ G, g2 =

(
p q
0 r

)
n =

(
1 c
0 1

)
∈ N . Set s = c+

b(p− r) + q(d− a)

ap
.

Then we see that

g1g2n ∈ g1g2N, g1g2n = g2g1m ∈ g2g1N

where m =

(
1 s
0 1

)
∈ N . Similarly, we can show the opposite inclusion. Thus, G/N is an

abelian group.
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