Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 12, 2020

Problems in Section 2.14.

1. If G is an abelian group of order p^n , p a prime and $n_1 \ge n_2 \ge \cdots \ge n_k > 0$, are the invariants of G, show that the maximal order of any elements in G is p^{n_1} .

Proof. Choose $g \in G$. Consequently, $g = x_1^{a_1} x_2^{a_2} \cdots x_k^{a_k}$, where $a_i \leq p^{n_i}$ for each *i*. It is enough to show that $g^{p^{n_1}} = 0$. Observe that

$$g^{p^{n_1}} = (x_1^{a_1} x_2^{a_2} \cdots x_k^{a_k})^{p^{n_1}}$$

= $x_1^{a_1 \cdot p^{n_1}} x_2^{a_2 \cdot p^{n_1}} \cdots x_k^{a_k \cdot p^{n_1}}$
= $(x_1^{p_{n_1}})^{a_1} (x_2^{p_{n_2}})^{p_{n_1 - n_2} a_2} \cdots (x_k^{p_{n_k}})^{p_{n_1 - n_k} a_k}$
= $e \cdot e \cdots e = e$

so that every element of G has maximal order of p^{n_1} .

2. If G is a group, A_1, \dots, A_k normal subgroups of G such that $A_i \cap (A_1 A_2 \cdots A_{i-1}) = (e)$ for all *i*, show that G is the direct product of A_1, \dots, A_k if $G = A_1 \cdots A_k$.

Proof. From that

$$o(A_1 A_2 \cdots A_{k-1} A_k) = \frac{\prod_{i=1}^k o(A_i)}{\prod_{n=1}^{k-1} o((\prod_{j=1}^{k-n} A_j) \cap A_{k+1-n})}$$

since $A_i \cap (A_1 A_2 \cdots A_{i-1}) = (e)$ for all i,

$$o(G) = o(A_1 A_2 \cdots A_{k-1} A_k) = \prod_{i=1}^k o(A_i)$$

Now by applying the result of Problem 18 of Section 2.13, G is the direct product of $A_1, \dots A_k$.

3. Using Theorem 2.14.1, prove that if a finite abelian group has subgroups of order m and n, then it has a subgroup whose order is the least common multiple of m and n.

Proof. We know that if a finite abelian group G exists and d is a positive integer such that d divides o(G), then there is a subgroup of G of order d. Now, we set H and K be the subgroup of G with orders m and n respectively. Then we have

$$o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$$

Note that by Lagrange's theorem, $o(H \cap K)$ divides both o(H) = m, o(K) = n. Hence, $gcd(m,n)|o(H \cap K)$. Moreover, lcm(m,n)|o(HK) from the above identity. Since HK is abelian, there exists a subgroup of HK (hence of G) of order lcm(m,n).

4. Describe all the finite abelian groups of order a) $2^6\,$

Solution. A finite abelian group of order 2^6 is isomorphic to one of the 11 below:

$$\mathbb{Z}_{26}, \quad \mathbb{Z}_{25} \times \mathbb{Z}_2, \quad \mathbb{Z}_{24} \times \mathbb{Z}_{22}, \quad \mathbb{Z}_{24} \times \mathbb{Z}_2 \times \mathbb{Z}_2, \\ \mathbb{Z}_{23} \times \mathbb{Z}_{23}, \quad \mathbb{Z}_{23} \times \mathbb{Z}_{22} \times \mathbb{Z}_2, \quad \mathbb{Z}_{23} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \\ \mathbb{Z}_{22} \times \mathbb{Z}_{22} \times \mathbb{Z}_{22}, \quad \mathbb{Z}_{22} \times \mathbb{Z}_{22} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2. \end{aligned}$$

b) 11⁶

Solution. A finite abelian group of order 11^6 is isomorphic to one of the 11 below:

$$\begin{split} & \mathbb{Z}_{11^6}, \quad \mathbb{Z}_{11^5} \times \mathbb{Z}_{11}, \quad \mathbb{Z}_{11^4} \times \mathbb{Z}_{11^2}, \quad \mathbb{Z}_{11^4} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}, \\ & \mathbb{Z}_{11^3} \times \mathbb{Z}_{11^3}, \quad \mathbb{Z}_{11^3} \times \mathbb{Z}_{11^2} \times \mathbb{Z}_{11}, \quad \mathbb{Z}_{11^3} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}, \\ & \mathbb{Z}_{11^2} \times \mathbb{Z}_{11^2} \times \mathbb{Z}_{11^2}, \quad \mathbb{Z}_{11^2} \times \mathbb{Z}_{11^2} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}, \\ & \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}. \end{split}$$

c) 7^5

Solution. A finite abelian group of order 7^5 is isomorphic to one of the 7 below:

$$\begin{aligned} \mathbb{Z}_{7^5}, \quad \mathbb{Z}_{7^4} \times \mathbb{Z}_7, \quad \mathbb{Z}_{7^3} \times \mathbb{Z}_{7^2}, \quad \mathbb{Z}_{7^3} \times \mathbb{Z}_7 \times \mathbb{Z}_7, \\ \mathbb{Z}_{7^2} \times \mathbb{Z}_{7^2} \times \mathbb{Z}_7, \quad \mathbb{Z}_{7^2} \times \mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7, \quad \mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7. \end{aligned}$$

d) $2^4 \cdot 3^4$

Solution. A finite abelian group of order $2^4 \cdot 3^4$ is isomorphic to one of the $5 \cdot 5 = 25$ below: $\mathbb{Z}_{2^4} \times \mathbb{Z}_{3^4}$, $\mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^4}$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3}$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^4}$, $\mathbb{Z}_{2^4} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3$, $\mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3$, $\mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^2}$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^2}$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^2}$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^4} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^4} \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^4} \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$.

5. Show how to get all abelian groups of order $2^3 \cdot 3^4 \cdot 5$.

Solution. We make use of the Corollary of Theorem 2.14.3. That is, the number of nonisomorphic abelian groups of order $p_1^{a_1} \cdots p_r^{a^r}$, where p_i are distinct primes with $a_i > 0$, is $p(a_1) \cdots p(a_r)$, where p(u) denotes the number of partitions of u. In our cases, we have total of $p(3) \cdot p(4) \cdot p(1) = 15$ nonisomportic abelian copies. Explicitly,

$$\mathbb{Z}_{2^3} \times \mathbb{Z}_{3^4} \times \mathbb{Z}_5, \quad \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^4} \times \mathbb{Z}_5, \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^4} \times \mathbb{Z}_5, \\ \mathbb{Z}_{2^3} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3, \times \mathbb{Z}_5, \quad \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^3} \times \mathbb{Z}_3, \times \mathbb{Z}_5, \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \times \mathbb{Z$$

6. If G is an abelian group of order p^n with invariants $n_1 \ge n_2 \ge n_k > 0$ and $H \ne (e)$ is a subgroup of G, show that if $h_1 \ge h_2 \ge h_s > 0$ are the invariants of H, then $k \ge s$ and for each $i, h_i \le n_i$ for $i = 1, 2, \dots, s$.

Proof. We know that G is an internal product expressed as $G = A_1 A_2 \cdots A_k$, where A_i are normal subgroups of order p^{n_i} each. Consequently,

$$H = H \cap G = H \cap (A_1 A_2 \cdots A_k) = \prod_{i=1}^k (H \cap A_i) = B_1 B_2 \cdots B_s$$

where $H \cap A_i = B_i$ for each $i = 1, \dots, s, H \cap A_i \neq (e)$. Clearly, H is internal products of B_i 's and each B_i has order p^{h_i} , with $h_i \leq n_i$. $k \geq s$ is trivial now.

If G is an abelian group, let \widehat{G} be the set of all homomorphisms of G into the group of non-zero complex numbers under multiplication. If $\phi_1, \phi_2 \in \widehat{G}$, define $\phi_1 \cdot \phi_2$ by $(\phi_1 \cdot \phi_2)(g) = \phi_1(g)\phi_2(g)$ for all $g \in G$.

7. Show that \widehat{G} is an abelian group under the operation defined.

Proof. Choose any $\phi_1, \phi_2 \in \widehat{G}$. Then for all $g \in G$, as multiplication in complex numbers is commutative, $\phi_1(g)\phi_2(g) = \phi_2(g)\phi_1(g)$. Hence, \widehat{G} is abelian.

8. If $\phi \in \widehat{G}$ and G is finite, show that $\phi(g)$ is a root of unity for every $g \in G$.

Proof. If G is finite, then for every $g \in G$, there is an integer k = o(G) so that $g^k = e$. Consequently, $\phi(g)^k = \phi(g^k) = 1$ so that $\phi(g)$ is a root of unity in \mathbb{C} .

9. If G is finite cyclic group, show that \widehat{G} is cyclic and $o(\widehat{G}) = o(G)$, hence G and \widehat{G} are isomorphic.

Proof. Let o(G) = n. Suppose G = (g). Then for all $\phi \in \widehat{G}$, $\phi(g)^n = 1$ so that $\phi(G)$ is mapped into the subgroup of roots of unity of n. Choose $\phi \in \widehat{G}$ such that $\phi(g) = w$. It clearly has order n. For any $\psi \in \widehat{G}$, $\psi(g^a)$ is mapped to (w) in \mathbb{C} , so that $\psi \in (\phi)$. Thus, \widehat{G} is cyclic, with order n and hence G and \widehat{G} are isomorphic.

10. if $g_1 \neq g_2$ are in G, G a finite abelian group, prove that there is a $\phi \in \widehat{G}$ with $\phi(g_1) \neq \phi(g_2)$.

Proof. Since every finite abelian group is a product of cyclic groups, it is sufficient to consider only the cyclic case. But for any finite cyclic group, by Problem 9, $\hat{G} \simeq G$ so that for all $g \neq e \in G$, there is $\phi \in \hat{G}$ such that $\phi(g) \neq 1$. Hence, $\phi(g_1g_2) \neq 1 \iff \phi(g_1) \neq \phi(g_2)$.

11. If G is a finite abelian group prove that $o(G) = o(\widehat{G})$ and G is isomorphic to \widehat{G} .

Proof. Note that every finite abelian group is the direct product of cyclic groups. Since for every finite cyclic group $H, H \simeq \widehat{H}$, so that $G \simeq \widehat{G}$.

12. If $\phi \neq 1 \in \widehat{G}$ where G is an abelian group, show that $\sum_{g \in G} \phi(g) = 0$.

Proof. Since G is abelian, we can take $b \in G$ such that $\phi(b) \neq 1$ for all $\phi \in \widehat{G}$. Thus,

$$\sum_{g \in G} \phi(g) = \sum_{g \in G} \phi(gb) = \phi(b) \sum_{g \in G} \phi(g)$$

which implies $(1 - \phi(b)) \sum_{g \in G} \phi(g) = 0$ so that $\sum_{g \in G} \phi(g) = 0$.