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Problems in Section 2.14.

1. If G is an abelian group of order p™, p a prime and ny > ny > --- > ni > 0, are the

invariants of GG, show that the maximal order of any elements in G is p™.
Proof. Choose g € G. S]onsequently, g = x{*x3? - x;*, where a; < p™ for each i. It is
enough to show that ¢g?"' = 0. Observe that
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so that every element of G has maximal order of p™'. 0

2. If G is a group, Ay, -+, Ay normal subgroups of G such that A;N(A142---A;—1) = (e)
for all ¢, show that G is the direct product of Aq,--- Ay if G = A1 --- Ay.

Proof. From that
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since A; N (A1Az--- Aj—1) = (e) for all i,

k
0o(G) = o(A1 Az - - Ap_14;) = [ ] o(Ay).

=1

Now by applying the result of Problem 18 of Section 2.13, G is the direct product of
Ay, Ay O



3. Using Theorem 2.14.1, prove that if a finite abelian group has subgroups of order m
and n, then it has a subgroup whose order is the least common multiple of m and n.

Proof. We know that if a finite abelian group G exists and d is a positive integer such that
d divides o(G), then there is a subgroup of G of order d. Now, we set H and K be the
subgroup of G with orders m and n respectively. Then we have
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Note that by Lagrange’s theorem, o(H N K) divides both o(H) = m,o(K) = n. Hence,
ged(m,n)lo(H N K). Moreover, lem(m,n)|o(HK) from the above identity. Since HK is
abelian, there exists a subgroup of H K (hence of G) of order lem(m,n). O

4. Describe all the finite abelian groups of order
a) 26

Solution. A finite abelian group of order 2% is isomorphic to one of the 11 below:
Z26, Z25 X ZQ, 224 X 2227 224 X ZQ X ZQ,
Z23 X 223, 223 X ZQQ X ZQ, Z23 X Zg X ZQ X Zg,
L2 X Loz X Lig2,  Zig2 X Loz X Lo X Lo g2 X Ly X Lo X Za,
ZQXZQXZQXZQXZQXZQ.

O
b) 116
Solution. A finite abelian group of order 11° is isomorphic to one of the 11 below:
Zyi6, ZLyys X Ly1,  Zyga X Lyqg2, Zyga X ZLyy X 2y,
L3 X L3,  Lyys X Lyy2 X Ly1, Zyys X 21 X Za1 X Zq1,
Zii2 X Zyq2 X Lyq2, Zyg2 X Zqq2 X Za1 X Z11 Zqq2 X 2Ly X Za1 X Z11,
Ty X 2y X Ly X 2y X 2y X Ly
O
c) 7
Solution. A finite abelian group of order 7° is isomorphic to one of the 7 below:
Lns,  Zga X Ly, gz X L2,  Zigz X L X L,
Lz X Lipz X Ligy D2 X Lig X Lig X Ly, Zip X Lg X Lig X L X L.
O



d) 2. 3%

Solution. A finite abelian group of order 2*-3? is isomorphic to one of the 5-5 = 25 below:

Ziga X Liga, Loz X Lp X Ligs, Loz X Ligz X Liga, L2 X Lo X Lo X L34,

Lo X Lo X Ly X Ly X Liga, Tiga X Ligz X L3, Loz X Lo X Ligz X L3, Lg2 X Lig2 X Lizz X L3,

Lig2 X Lo X Lig X Ligs X Ly, Lo X Lo X Lo X Lig X Ligs X Ly, Liga X Lig2 X L2,

Zigs X Ly X Uigz X Ligz, Loz X Zigz X Ligz X L2, Loz X Lo X Ly X L2 X Ls2,

Lo X Lo X Ly X Lig X Lz X Lig2,  Ziga X Ligz X Ly X Ly, Linz X Lo X Lig2 X Lig X Zs3,

Zig2 X Ligz X Lig2 X Lz X L3, Loz X Lig X Lg X g2 X Ly X L3, Lo X Ly X Lip X Lo X Zigz X Ly X Zs3,
Ziga X Uz X Uz X Ly X Ly, gz X Lo X Lz X Ly X Ly X L3, D2 X Lig2 X Lz X Lz X Ly X L3,

Zigz X Lo X Lo X Lig X Lz X Lz X L3, Lo X Lo X Ly X Lo X Lz X Lz X Ly X Zs3.

O
5. Show how to get all abelian groups of order 23 - 3% . 5.

Solution. We make use of the Corollary of Theorem 2.14.3. That is, the number of noni-
somorphic abelian groups of order pj* - - - p? | where p; are distinct primes with a; > 0, is
p(ai)---p(ar), where p(u) denotes the number of partitions of u. In our cases, we have
total of p(3) - p(4) - p(1) = 15 nonisomporhic abelian copies. Explicitly,

Loz X Ziga X L, Loz X Lg X Liza X L, Lo X Lo X Lo X ZLiza X ZLs,

Loz X Zigs X Ly X Ls, g2 X Lig X Ligz X Lz X Ls, Lo X Lo X Lo X Lizz X L3 X Ls,

Zigs X iz X Lz X Lisy, Loz X Ly X Ligz X Lig2 X Ls, Lo X Lo X Ly X Ls2 X L3z X Ls,

Ligs X iz X Lz X Ly X L, g2 X Lo X Lig2 X Lz X Ly X Ls,

Zigs X L3 X g X Ly X Lz X L5, Lo X Lo X Lo X L2 X Ly X L3 X Ls,

Lo X Lo X Ly X iz X Xz X Lz X Lz X L, Loz X Ly X Lz X Lz X Ly X Ly X Zs.

O

6. If G is an abelian group of order p" with invariants n; > ng > ng > 0 and H # (e) is a
subgroup of G, show that if Ay > he > hg > 0 are the invariants of H, then k£ > s and for
each 7, h; <n; fori=1,2,--- ,s.

Proof. We know that G is an internal product expressed as G = A1 As - - - A, where A; are
normal subgroups of order p™ each. Consequently,

k
H=HNG=HnN(AAy---Ay) :H(HmAi) = BBy B,
i=1
where H N A; = B; foreach i =1,--- ,s, HN A; # (e). Clearly, H is internal products of
B;’s and each B; has order phi, with h; < n;. k > s is trivial now. O



If G is an abelian group, let G be the set of all homomorphisms of G into the group
of non-zero complex numbers under multiplication. If ¢1,¢2 € G, define ¢1 - ¢o by

(61 - $2)(9) = ¢1(9)92(g) for all g € G.

7. Show that G is an abelian group under the operation defined.

Proof. Choose any ¢1, ¢2 € G. Then for all g € G, as multiplication in complex numbers
is commutative, ¢1(g)d2(9) = ¢2(g)p1(g). Hence, G is abelian. O

8. If p € G and G is finite, show that ¢(g) is a root of unity for every g € G.

Proof. If G is finite, then for every g € G, there is an integer k = o(G) so that g¥ = e
Consequently, ¢(g)F = ¢(g*) = 1 so that ¢(g) is a root of unity in C. O

9. If G is finite cyclic group, show that G is cyclic and o(é) = 0(G), hence G and G are
isomorphic.

Proof. Let o(G) = n. Suppose G = (g). Then for all ¢ € G, ¢(g9)™ = 1 so that ¢(G) is
mapped into the subgroup of roots of unity of n. Choose ¢ € G such that o(g) = w. It
clearly has order n. For any 1 € G, ¥ (g®) is mapped to (w) in C, so that 1) € (¢). Thus,
G is cyclic, with order n and hence G and G are isomorphic. O

10. if g1 # g¢go are in G, G a finite abelian group, prove that there is a ¢ € G with
P(g1) # B(g2)-

Proof. Since every finite abelian group is a product of cyclic groups, it is sufficient to
consider only the cyclic case. But for any finite cyclic group, by Problem 9, G >~ G so that
for all g # e € G, there is ¢ € G such that ¢(g) # 1. Hence, ¢(g192) # 1 < ¢(g1) #
P(g2)- O

11. If G is a finite abelian group prove that o(G) = O(é) and @ is isomorphic to G.

Proof. Note that every finite abelian group is the direct product of cyclic groups. Since
for every finite cyclic group H, H ~ H, so that G ~ G. 0

12. If ¢ # 1 € G where G is an abelian group, show that >gec ?(g) = 0.

Proof. Since G is abelian, we can take b € G such that ¢(b) # 1 for all ¢ € G. Thus,
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which implies (1 — ¢(b)) >_ e #(g9) = 0 so that 37/, ¢(g) = 0. -



