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Problems in Section 2.14.

1. If G is an abelian group of order pn, p a prime and n1 ≥ n2 ≥ · · · ≥ nk > 0, are the
invariants of G, show that the maximal order of any elements in G is pn1 .

Proof. Choose g ∈ G. Consequently, g = xa11 x
a2
2 · · ·x

ak
k , where ai ≤ pni for each i. It is

enough to show that gp
n1 = 0. Observe that

gp
n1

= (xa11 x
a2
2 · · ·x

ak
k )p

n1

= xa1·p
n1

1 xa2·p
n1

2 · · ·xak·p
n1

k

= (x
pn1
1 )a1(x

pn2
2 )pn1−n2a2 · · · (xpnk

k )pn1−nk
ak

= e · e · · · e = e

so that every element of G has maximal order of pn1 .

2. If G is a group, A1, · · · , Ak normal subgroups of G such that Ai ∩ (A1A2 · · ·Ai−1) = (e)
for all i, show that G is the direct product of A1, · · ·Ak if G = A1 · · ·Ak.

Proof. From that

o(A1A2 · · ·Ak−1Ak) =

∏k
i=1 o(Ai)∏k−1

n=1 o((
∏k−n

j=1 Aj) ∩Ak+1−n)
,

since Ai ∩ (A1A2 · · ·Ai−1) = (e) for all i,

o(G) = o(A1A2 · · ·Ak−1Ak) =
k∏

i=1

o(Ai).

Now by applying the result of Problem 18 of Section 2.13, G is the direct product of
A1, · · ·Ak.
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3. Using Theorem 2.14.1, prove that if a finite abelian group has subgroups of order m
and n, then it has a subgroup whose order is the least common multiple of m and n.

Proof. We know that if a finite abelian group G exists and d is a positive integer such that
d divides o(G), then there is a subgroup of G of order d. Now, we set H and K be the
subgroup of G with orders m and n respectively. Then we have

o(HK) =
o(H)o(K)

o(H ∩K)
.

Note that by Lagrange’s theorem, o(H ∩ K) divides both o(H) = m, o(K) = n. Hence,
gcd(m,n)|o(H ∩ K). Moreover, lcm(m,n)|o(HK) from the above identity. Since HK is
abelian, there exists a subgroup of HK(hence of G) of order lcm(m,n).

4. Describe all the finite abelian groups of order
a) 26

Solution. A finite abelian group of order 26 is isomorphic to one of the 11 below:

Z26 , Z25 × Z2, Z24 × Z22 , Z24 × Z2 × Z2,

Z23 × Z23 , Z23 × Z22 × Z2, Z23 × Z2 × Z2 × Z2,

Z22 × Z22 × Z22 , Z22 × Z22 × Z2 × Z2 Z22 × Z2 × Z2 × Z2,

Z2 × Z2 × Z2 × Z2 × Z2 × Z2.

b) 116

Solution. A finite abelian group of order 116 is isomorphic to one of the 11 below:

Z116 , Z115 × Z11, Z114 × Z112 , Z114 × Z11 × Z11,

Z113 × Z113 , Z113 × Z112 × Z11, Z113 × Z11 × Z11 × Z11,

Z112 × Z112 × Z112 , Z112 × Z112 × Z11 × Z11 Z112 × Z11 × Z11 × Z11,

Z11 × Z11 × Z11 × Z11 × Z11 × Z11.

c) 75

Solution. A finite abelian group of order 75 is isomorphic to one of the 7 below:

Z75 , Z74 × Z7, Z73 × Z72 , Z73 × Z7 × Z7,

Z72 × Z72 × Z7, Z72 × Z7 × Z7 × Z7, Z7 × Z7 × Z7 × Z7 × Z7.
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d) 24 · 34

Solution. A finite abelian group of order 24 ·34 is isomorphic to one of the 5 ·5 = 25 below:

Z24 × Z34 , Z23 × Z2 × Z34 , Z22 × Z22 × Z34 , Z22 × Z2 × Z2 × Z34 ,

Z2 × Z2 × Z2 × Z2 × Z34 , Z24 × Z33 × Z3, Z23 × Z2 × Z33 × Z3, Z22 × Z22 × Z33 × Z3,

Z22 × Z2 × Z2 × Z33 × Z3, Z2 × Z2 × Z2 × Z2 × Z33 × Z3, Z24 × Z32 × Z32 ,

Z23 × Z2 × Z32 × Z32 , Z22 × Z22 × Z32 × Z32 , Z22 × Z2 × Z2 × Z32 × Z32 ,

Z2 × Z2 × Z2 × Z2 × Z32 × Z32 , Z24 × Z32 × Z3 × Z3, Z23 × Z2 × Z32 × Z3 × Z3,

Z22 × Z22 × Z32 × Z3 × Z3, Z22 × Z2 × Z2 × Z32 × Z3 × Z3, Z2 × Z2 × Z2 × Z2 × Z32 × Z3 × Z3,

Z24 × Z3 × Z3 × Z3 × Z3, Z23 × Z2 × Z3 × Z3 × Z3 × Z3, Z22 × Z22 × Z3 × Z3 × Z3 × Z3,

Z22 × Z2 × Z2 × Z3 × Z3 × Z3 × Z3, Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z3 × Z3.

5. Show how to get all abelian groups of order 23 · 34 · 5.

Solution. We make use of the Corollary of Theorem 2.14.3. That is, the number of noni-
somorphic abelian groups of order pa11 · · · pa

r

r , where pi are distinct primes with ai > 0, is
p(a1) · · · p(ar), where p(u) denotes the number of partitions of u. In our cases, we have
total of p(3) · p(4) · p(1) = 15 nonisomporhic abelian copies. Explicitly,

Z23 × Z34 × Z5, Z22 × Z2 × Z34 × Z5, Z2 × Z2 × Z2 × Z34 × Z5,

Z23 × Z33 × Z3 × Z5, Z22 × Z2 × Z33 × Z3 × Z5, Z2 × Z2 × Z2 × Z33 × Z3 × Z5,

Z23 × Z32 × Z32 × Z5, Z22 × Z2 × Z32 × Z32 × Z5, Z2 × Z2 × Z2 × Z32 × Z32 × Z5,

Z23 × Z32 × Z3 × Z3 × Z5, Z22 × Z2 × Z32 × Z3 × Z3 × Z5,

Z23 × Z3 × Z3 × Z3 × Z3 × Z5, Z2 × Z2 × Z2 × Z32 × Z3 × Z3 × Z5,

Z2 × Z2 × Z2 × Z3 × Z3 × Z3 × Z3 × Z5, Z22 × Z2 × Z3 × Z3 × Z3 × Z3 × Z5.

6. If G is an abelian group of order pn with invariants n1 ≥ n2 ≥ nk > 0 and H 6= (e) is a
subgroup of G, show that if h1 ≥ h2 ≥ hs > 0 are the invariants of H, then k ≥ s and for
each i, hi ≤ ni for i = 1, 2, · · · , s.

Proof. We know that G is an internal product expressed as G = A1A2 · · ·Ak, where Ai are
normal subgroups of order pni each. Consequently,

H = H ∩G = H ∩ (A1A2 · · ·Ak) =

k∏
i=1

(H ∩Ai) = B1B2 · · ·Bs

where H ∩ Ai = Bi for each i = 1, · · · , s,H ∩ Ai 6= (e). Clearly, H is internal products of
Bi’s and each Bi has order phi , with hi ≤ ni. k ≥ s is trivial now.

3



If G is an abelian group, let Ĝ be the set of all homomorphisms of G into the group
of non-zero complex numbers under multiplication. If φ1, φ2 ∈ Ĝ, define φ1 · φ2 by
(φ1 · φ2)(g) = φ1(g)φ2(g) for all g ∈ G.

7. Show that Ĝ is an abelian group under the operation defined.

Proof. Choose any φ1, φ2 ∈ Ĝ. Then for all g ∈ G, as multiplication in complex numbers
is commutative, φ1(g)φ2(g) = φ2(g)φ1(g). Hence, Ĝ is abelian.

8. If φ ∈ Ĝ and G is finite, show that φ(g) is a root of unity for every g ∈ G.

Proof. If G is finite, then for every g ∈ G, there is an integer k = o(G) so that gk = e.
Consequently, φ(g)k = φ(gk) = 1 so that φ(g) is a root of unity in C.

9. If G is finite cyclic group, show that Ĝ is cyclic and o(Ĝ) = o(G), hence G and Ĝ are
isomorphic.

Proof. Let o(G) = n. Suppose G = (g). Then for all φ ∈ Ĝ, φ(g)n = 1 so that φ(G) is
mapped into the subgroup of roots of unity of n. Choose φ ∈ Ĝ such that φ(g) = w. It
clearly has order n. For any ψ ∈ Ĝ, ψ(ga) is mapped to (w) in C, so that ψ ∈ (φ). Thus,
Ĝ is cyclic, with order n and hence G and Ĝ are isomorphic.

10. if g1 6= g2 are in G, G a finite abelian group, prove that there is a φ ∈ Ĝ with
φ(g1) 6= φ(g2).

Proof. Since every finite abelian group is a product of cyclic groups, it is sufficient to
consider only the cyclic case. But for any finite cyclic group, by Problem 9, Ĝ ' G so that
for all g 6= e ∈ G, there is φ ∈ Ĝ such that φ(g) 6= 1. Hence, φ(g1g2) 6= 1 ⇐⇒ φ(g1) 6=
φ(g2).

11. If G is a finite abelian group prove that o(G) = o(Ĝ) and G is isomorphic to Ĝ.

Proof. Note that every finite abelian group is the direct product of cyclic groups. Since
for every finite cyclic group H, H ' Ĥ, so that G ' Ĝ.

12. If φ 6= 1 ∈ Ĝ where G is an abelian group, show that
∑

g∈G φ(g) = 0.

Proof. Since G is abelian, we can take b ∈ G such that φ(b) 6= 1 for all φ ∈ Ĝ. Thus,∑
g∈G

φ(g) =
∑
g∈G

φ(gb) = φ(b)
∑
g∈G

φ(g)

which implies (1− φ(b))
∑

g∈G φ(g) = 0 so that
∑

g∈G φ(g) = 0.
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