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Problems in Section 2.13.

1. If A and B are groups, prove that A×B is isomorphic to B ×A.

Proof. Let us define a mapping φ : A×B → B×A by φ((a, b)) = (b, a) for any a ∈ A, b ∈ B.
We claim that φ is indeed a bijective homomorphism. From

φ((a1, b1) · (a2, b2)) = φ((a1a2, b1b2)) = (b1b2, a1a2)

= (b1, a1) · (b2, a2) = φ((a1, b1)) · φ((a2, b2))

we can conclude that φ is a homomorphism. It is also injective since φ(ea, eb) = (eb, ea)(
ea and eb are identity elements of A and B respectively). Also from the definition of φ, it
is clearly surjective. Hence, A×B ' B ×A.

2. If G1, G2, G3 are groups, prove that (G1 × G2) × G3 is isomorphic to G1 × G2 × G3.
Care to generalize?

Proof. Define a mapping φ : (G1 ×G2)×G3 → G1 ×G2 ×G3 by

φ(((g1, g2), g3)) = (g1, g2, g3), where g1 ∈ G1, g2 ∈ G2, g3 ∈ G3.

φ is clearly a bijective homomorphism. Thus, (G1 ×G2)×G3 ' G1 ×G2 ×G3.

3. If T = G1 ×G2 × · · · ×Gn prove that for each i = 1, 2, · · · , n there is a homomorphism
φi of T onto Gi. Find the kernel of φi.

Proof. For each i = 1, 2, · · · , n, define φi : T → Gi by

φi((g1, g2, · · · , gi, · · · , gn)) = gi ∈ Gi

Then clearly φi is a homomorphism. Let Ki be the kernel of φi. Then

Ki = {(g1, g2, · · · , gn) ∈ T : gi = ei} = G1 ×G2 × · · ·Gi−1 × (ei)×Gi+1 × · · · ×Gn.
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4. Let G be a group and let T = G×G.
a) Show that D = {(g, g) ∈ G×G : g ∈ G} is a group isomorphic to G.

Proof. Define a mapping φ : D → G by φ((g, g)) = g. Then φ is a homomorphism. More-
over, φ has trivial kernel. Hence injective. Also from the definition itself, φ is surjective.
Hence, D ' G.

b) Prove that D is normal in T if and only if G is abelian.

Proof. Suppose D is normal. Then

(g, e)(d, d)(g−1, e) = (gdg−1, d) ∈ D =⇒ gd = dg

for all g, d ∈ G. Hence, G is abelian. Conversely, if G is abelian, for any (d, d) ∈ D,
(g, h) ∈ G × G, (g, h)(d, d)(g−1, h−1) = (d, d) ∈ D implying D is normal in T . Hence
proved.

5. Let G be a finite abelian group. Prove that G is isomorphic to the direct product of its
Sylow subgroups.

Proof. Let o(G) = pα1
1 pα2

2 · · · p
αk
k where pi are distinct primes. Let Pi denote the pi-Sylow

subgroups of G respectively. Since G is abelian, Pi’s are normal in G. Hence, arbitrary
product of Pi’s form a subgroup in G. Also, from the fact that each pi Sylow subgroups
are pi groups, Pi ∩

∏
k 6=i Pk = (e). Thus, o(G) = o(P1)o(P2) · · · o(Pk) = o(P1P2 · · ·Pk)

and hence G = P1P2 · · ·Pk. Now suppose g = p1p2 · · · pk, pi ∈ Pi is not unique in its
representation. So, we assume that there is qi ∈ Pi, not every pi = qi, q1q2 ·qk = p1p2 · · · pk.
But since G is abelian and for each i,

q−1i pi = (q−11 p1)(q
−1
2 p2) · · · (q−1i−1pi−1)(q

−1
i+1pi+1) · · · (q−1k pk) ∈ Pi ∩

∏
k 6=i

Pk = (e)

so that pi = qi. Hence, we conclude that G is (internal) direct product of its Sylow
subgroups.

6. Let A, B be cyclic groups of order m and n, respectively. Prove that A×B is cyclic if
and only if m and n are relatively prime.

Proof. Let G = A×B. Clearly, o(G) = mn. Suppose given G is cyclic but gcd(m,n) > 1.
Choose any (a, b) ∈ G. Let k = lcm(m,n). Then,

(a, b)k = (ak, bk) = (e, e)

for all (a, b) ∈ G. Since gcd(m,n) > 1, k = lcm(m,n) < mn. Thus, G does not admit a
generator, which is clearly a contradiction. Conversely, assume that gcd(m,n) = 1. Let a
and b be the generators of A and B respectively. Set d be the order of (a, b). We know
that (a, b)k = (e, e) so that d | k. Also, from the fact that ad = e, bd = e, m | d and n | d so
that k | d. This shows that d = k = lcm(m,n) = mn, and hence G admits a generator.
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7. Use the result of Problem 6 to prove the Chinese Remainder Theorem; namely, if m
and n are relatively prime integers and u, v any two integers, then we can find an integer
x such that x ≡ u (mod m) and x ≡ v (mod n).

Proof. Let a and b be the generators of A and B respectively, where A and B are cyclic
groups of order m and n. Note that (a, b) is a generator for the cyclic group A×B. Choose
au ∈ A, bv ∈ B. Then there will be an integer x such that

(a, b)x = (ax, bx) = (au, bv) ⇐⇒ x ≡ u (mod m), x ≡ v (mod n),

thereby proving the theorem.

8. Give an example of a group G and normal subgroups N1, N2, · · · , Nn such that G =
N1N2 · · ·Nn and Ni ∩ Nj = (e) for i 6= j and yet G is not the internal direct product of
N1, · · · , Nn.

Solution. Take a Klein-4 group G = {e, a, b, ab}. Consider the normal subgroups N1 =
{e, a}, N2 = {e, b}, N3 = {e, ab}. Then clearly G = N1N2N3 and Ni ∩ Nj = (e) for all
i 6= j. But ab = a · b · e = e · e · ab which shows that representation of ab ∈ G is not unique
in such decomposition. Hence, G is not the internal direct product of N1, N2 and N3.

9. Prove that G is the internal direct product of the normal subgroups N1 · · · , Nn if and
only if
1) G = N1 · · ·Nn.
2) Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nn) = (e) for i = 1, · · · , n.

Proof. Suppose G is the internal direct product of Ni’s. Clearly 1) must hold. Also, if
there are mi ∈ Ni such that

mi = m1m2 · · ·mi−1mi+1 · · ·mn ∈ Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nn)

⇐⇒ e · · · e ·mi · e · · · e = m1m2 · · ·mi−1 · e ·mi+1 · · ·mn,

then by the uniqueness of representation in internal products, mi = e for all i = 1, · · · , n.
Hence, 2) is also satisfied. Conversely, we assume that the conditions 1) and 2) are true. It
is enough to show the uniqueness of representation of the elements in the product. Suppose
not. That is, there are more than one representation of g ∈ G as

g = m1m2 · · ·mn = k1k2 · · · kn
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where mi, ki ∈ Ni. Using that every Ni is normal in G, observe that

m1m2 · · ·mn = k1k2 · · · kn
⇐⇒ (k1)

−1m1 = k2 · · · kn ·m−1n m−1n−1 · · ·m
−1
2

⇐⇒ (k1)
−1m1 = k2(k3 · · · knm−1n · · ·m−13 )m−12

⇐⇒ (k1)
−1m1 = k2(k3 · · · knm−1n · · ·m−13 )m−12 · (k3 · · · knm

−1
n · · ·m−13 )−1 · (k3 · · · knm−1n · · ·m−13 )

⇐⇒ (k1)
−1m1 = k2m

′
2 · (k3 · · · knm−1n · · ·m−13 ) for some m′2 ∈ N2

⇐⇒ (k1)
−1m1 = (k2m

′
2)(k3m

′
3) · (k4 · · · knm−1n · · ·m−14 ) for some m′3 ∈ N3

⇐⇒ (k1)
−1m1 = (k2m

′
2)(k3m

′
3) · · · (knm′n) for some m′i ∈ Ni

⇐⇒ k1 = m1.

Repeating the above process, we can conclude that ki = mi for each i = 1, · · · , n. Thus,
G is the internal direct product of Ni’s.

10. LetG be a group, K1, · · · ,Kn normal subgroups ofG. Suppose thatK1∩K2∩· · ·∩Kn =
(e). Let Vi = G/Ki. Prove that there is an isomorphism of G into V1 × V2 × · · · × Vn.

Proof. We define a mapping φ : G→ V1 × V2 × · · · × Vn by

φ(g) = (gK1, gK2, · · · , gKn).

φ is clearly a homomorphism since

φ(gh) = (ghK1, ghK2, · · · , ghKn) = (gK1, gK2, · · · , gKn) · (hK1, hK2, · · · , hKn) = φ(g)φ(h).

Kernel K of φ is given by:

K = {g ∈ G : (gK1, gK2, · · · , gKn) = (K1,K2, · · · ,Kn)}
= {g ∈ G : g ∈ K1 ∩K2 ∩ · · · ∩Kn} = (e)

hence φ is an injective homomorphism and our proof is done.

11. Let G be a finite abelian group such that it contains a subgroup H0 6= (e) which lies
in every subgroup H 6= (e). Prove that G must be cyclic. What can you say about o(G)?

Proof. We introduce an useful lemma:

Lemma. Let p be a prime. A group G of order pn is cyclic if and only if it is an abelian
group having a unique subgroup of order p.
(⇒) Suppose a p-group is cyclic, then it is trivially abelian and has a unique subgroup of
order p. We now prove the converse. Suppose G is abelian and has an unique subgroup
H of order p. Let a ∈ G be the maximal order in G, that is, ap

k
= e and consequently
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k

= e for all g ∈ G. Now consider the subgroup (a). If (a) is proper in G, choose x 6∈ (a).
If xp ∈ (a), we take this. If xp 6∈ (a), let x′ = xp. If x′p = xp

2 ∈ (a), we take this x′ as x.
In fact, we are choosing x ∈ G− (a) with xp ∈ (a) with minimal order. Hence, xp = aq for
some integer q. Note that k = 1 is clearly not the case, otherwise x ∈ (a). So we assume
k > 1. Consequently,

e = xp
k

= aqp
k−1

and since a is of order pk, p | q so that xp = amp for some integer m. Hence, x−pamp =
e ⇐⇒ (x−1am)p = e =⇒ x−1am ∈ H ⊂ (a), which is clearly a contradiction. Hence,
(a) = G, and G is cyclic.

Now we head to our main problem. Note that every finite abelian group G is an internal
direct product of its Sylow subgroups. By the conditions given, every Sylow subgroups
must have non-trivial subgroup, which is clearly impossible. So the only case is that G
itself is a p-group, and H0 is a subgroup of order p. Now we apply the lemma. Hence we
obtain that G is cyclic.

12. Let G be a finite abelian group. Using Problem 11 show that G is isomorphic to a
subgroup of a direct product of a finite number of finite cyclic groups.

Proof. Let G be the group of minimal counter-example. We know that G is an internal
direct product of its Sylow sub-groups. That is, G = P1P2 · · ·Pn, where Pi are pi-Sylow
subgroups. For each Pi, if Pi is cyclic, then we are done. If not, by the Problem 11, there
are at least two normal subgroups A and B of Pi, each with order pi. Let P 1,1

i = Pi/A,

P 1,2
i = Pi/B. Since Pi is isomorphic to a subgroup of Pi/A×Pi/B, if both P 1,1

i and P 1,2
i are

cyclic, then we are done. If not, we can repeat the above procedure, at least within finite
times, to obtain P k,1i and P k,2i which both are cyclic at the same time. Then Pi must be
isomorphic to a subgroup of direct product of finite number of finite cyclic groups. Recall
that G is internal direct product of Sylow subgroups, thereby isomorphic to a subgroup of
finitely many number of finite cyclic groups.

13. Give an example of a finite non-abelian group G which contains a subgroup H0 6= (e)
such that H0 ⊂ H for all subgroups H 6= (e) of G.

Solution. Take the quaternion group G, G = {±1,±i,±j,±k}. There are only four non-
trivial proper subgroups, {1,−1}, {1,−1, i,−i}, {1,−1, j,−j}, {1,−1, k,−k}. Take H0 =
{1,−1} to see that H0 is contained in every 4 of above and nontrivial at the same time.

14. Show that every group of order p2, p a prime, is either cyclic or is isomorphic to the
direct product of two cyclic groups each of order p.
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Proof. If G has a generator, then it is clearly cyclic. So we now investigate the case where
G has no generator. In other words, every non-trivial elements of G has order p. Choose
a 6= e ∈ G. Then (a) is a normal subgroup in G. Further, choose b ∈ G − (a). Then
again bp = e, so that (b) is also a normal subgroup of G and (a)∩ (b) = (e). Consequently,
(a)(b) = G. Applying the result of Problem 9, G is the internal product of two cyclic
groups each of order p.

15. Let G = A × A where A is cyclic of order p, p a prime. How many automorphisms
does G have?

Solution. Zp × Zp ' GL(2,Zp) so that o(A (G)) = (p2 − 1)(p2 − p).

16. If G = K1 ×K2 × · · · ×Kn describe the center of G in terms of those of the K1.

Solution. Let Z(G) denote the center of a group G. Choose ki ∈ Ki and zi ∈ Ki where
(k1, k2, · · · , kn) ∈ G and (z1, z2, · · · , zn) ∈ Z(G). It follows that

(k1, k2, · · · , kn) · (z1, z2, · · · , zn) = (z1, z2, · · · , zn) · (k1, k2, · · · , kn) ⇐⇒ kizi = ziki

so that for each i = 1, 2, · · · , n, zi ∈ Z(Ki). Thus we can describe the centre of G as:

Z(G) = Z(K1)× Z(K2)× · · · × Z(Kn).

17. If G = K1 ×K2 × · · · ×Kn and g ∈ G, describe

N(g) = {x ∈ G : xg = gx}.

Solution. Let NG(g) denote the normalizer of an g ∈ G, where G is a group. Choose
ki ∈ Ki. Let g = (g1, g2, · · · , gn). It follows that

(k1, k2, · · · , kn)(g1, g2, · · · , gn) = (g1, g2, · · · , gn) · (k1, k2, · · · , kn) ⇐⇒ kigi = giki

so that for each i = 1, 2, · · · , n, ki ∈ NKi(gi). Thus,

NG(g) = NK1(g1)×NK2(g2)× · · · ×NK2(g2).

18. If G is a finite group and N1, N2, · · ·Nn are normal subgroups of G such that G =
N1N2 · · ·Nn and o(G) = o(N1)o(N2) · · · o(Nn), prove that G is the direct product of
N1, N2, · · · , Nn.
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Proof. Recall that any product of two normal subgroups is a normal subgroup. So,

o((N1N2 · · ·Nn−1)Nn) =
o(N1 · · ·Nn−1)o(Nn)

o(N1 · · ·Nn−1 ∩Nn)

=
o(N1 · · ·Nn−2)o(Nn−1)o(Nn)

o(N1 · · ·Nn−2 ∩Nn−1)o(N1 · · ·Nn−1 ∩Nn)

...

=

∏n
i=1 o(Ni)∏n−1

k=1 o((
∏n−k
j=1 Nj) ∩Nn+1−k)

.

But this implies N1 · · ·Nn−1 ∩Nn = (e). By changing Nn with any Ni, we can draw same
conclusions. Hence, by Problem 9, G is the direct product of Ni’s.
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