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Problems in Section 2.11.

1. List all the conjugate classes in S3, find the ca’s , and verify the class equation.

Solution. The conjugate classes of S3 is as follows:

C(id) = {id},
C((1, 2)) = {(1, 2), (1, 3), (2, 3)},
C((1, 2, 3)) = {(1, 2, 3), (1, 3, 2)}.

Consequently, cid = 1, c(1,2) = 3, and c(1,2,3) = 2. Thus,∑
a

ca = 1 + 3 + 2 = 6 = o(G).

Hence, the class equation is verified.

2. List all the conjugate classes in S4, find the ca’s , and verify the class equation.

Solution. The conjugate classes of S4 is as follows:

C(id) = {id},
C((1, 2)) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
C((1, 2, 3)) = {(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)},
C((1, 2)(3, 4)) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},
C((1, 2, 3, 4)) = {(1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3), (1, 2, 4, 3), (1, 3, 4, 2), (1, 4, 3, 2)}.

Consequently,

cid = 1, c(1,2) = 6, c(1,2,3) = 8, c(1,2)(3,4) = 3, c(1,2,3,4) = 6.

Thus, ∑
a

ca = 1 + 6 + 8 + 3 + 6 = 24 = o(G).

Hence, the class equation is verified.
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3. List all the conjugate classes in the group of quaternion units, find the ca’s and verify
the class equation.

Solution. The conjugate classes of quaternion group G = {±1,±i,±j,±k} is as follows:

C(1) = {1}, C(−1) = {−1},
C(i) = {i,−i}, C(j) = {j,−j}, C(k) = {k,−k}.

Consequently,

c1 = 1, c−1 = 1, ci = 2, cj = 2, ck = 2.

Thus, ∑
a

ca = 1 + 1 + 2 + 2 + 2 = 8 = o(G).

Hence, the class equation is verified.

4. List all the conjugate classes in the dihedral group of order 2n, find the ca’s and verify
the class equation. Notice how the answer depends on the parity of n.

Solution. We find the conjugate classes for which n is odd. Observe that

C(e) = {e}, C(y) = {y, yn−1}, · · · , C(yk) = {yk, yn−k},
(

1 ≤ k ≤ n− 1

2

)
,

C(x) = {xyk : k ≡ 0 (mod 2), 0 ≤ k ≤ n}, C(xy) = {xyk : k ≡ 1 (mod 2), 0 ≤ k ≤ n}.

Consequently,

ce = 1, cy = 2, · · · , cyk = 2, cx =
n− 1

2
, cxy =

n+ 1

2
.

Thus, ∑
a

ca = 1 + 2 · n− 1

2
+
n− 1

2
+
n+ 1

2
= 2n = o(G).

Now, suppose given n is even. Observe that

C(e) = {e}, C(y) = {y, yn−1}, · · · , C(yk) = {yk, yn−k} (1 ≤ k < n/2) , C(yn/2) = {yn/2},
C(x) = {xyk : k ≡ 0 (mod 2), 0 ≤ k ≤ n}, C(xy) = {xyk : k ≡ 1 (mod 2), 0 ≤ k ≤ n}.

Consequently,

ce = 1, cyn/2 = 1, cy = 2, · · · , cyk = 2, cx =
n

2
, cxy =

n

2
.
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Thus, ∑
a

ca = 1 + 1 + 2 ·
(n

2
− 1
)

+
n

2
+
n

2
= 2n = o(G).

Hence, the class equation is verified.

5. a) In Sn prove that there are
1

r

n!

(n− r)!
distinct r cycles.

Proof. Note that for an r-cycle (a1, a2, · · · , ar) we can choose
(
n
r

)
elements for the can-

didates a1, a2, · · · , ar. Now, in a cycle of length r, the number of cases of arranging the

sequence ai is given by
r!

r
. Thus, the number of total distinct r-cycles is:(
n

r

)
· r!
r

=
n!

r!(n− r)!
· r!
r

=
n!

r(n− r)!
.

b) Using this, find the number of conjugates that the r-cycle (1, 2, · · · , r) has in Sn.

Solution. We know that any two permutations having the same cycle decomposition are
conjugate. Therefore, the number of conjugates of r-cycle (1, 2, · · · , r) is exactly the number

of all distinct r-cycles in Sn. That is,
n!

r(n− r)!
.

c) Prove that any elements σ in Sn which commutes with (1, 2, · · · , r) is of the form
σ = (1, 2, · · · , r)iτ , where i = 0, 1, 2, · · · , r, τ is a permutation leaving all of 1, 2, · · · , r
fixed.

Proof. It is obvious that the permutations of the form σ = (1, 2, · · · , r)iτ commutes with
(1, 2, · · · , r). Note that there are (n − r)! possibilities for τ ∈ Sn. Thus, in total, there
are r · (n − r)! distinct σ in Sn. Recall that the number of conjugates of (1, 2, · · · , r) is

n!

r(n− r)!
, hence

o(N((1, 2, · · · , r)) =
o(G)

c(1,2,··· ,r)
=

n!

n!

r(n− r)!

= r · (n− r)!

so that there are at most r ·(n−r)! distinct permutations in Sn commute with (1, 2, · · · , r).
But since there are r · (n − r)! distinct σ in Sn, any element in Sn which commutes with
(1, 2, · · · , r) is of the form σ = (1, 2, · · · , r)iτ .

6. a) Find the number of conjugates of (1, 2)(3, 4) in Sn, n ≥ 4.
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Solution. The number of conjugates of (1, 2)(3, 4) is exactly the number of all possible
(a1, a2)(a3, a4) ∈ Sn, ai ∈ Jn. Thus, first we choose 4 distinct ai ∈ Jn, and partition into 2
halves. Thus, (

n

4

)
· 4!

2! · 2!
=

n!

8 · (n− 4)!

is the number of whole conjugates of (1, 2)(3, 4) in Sn.

b) Find the form of all elements commuting with (1, 2)(3, 4) in Sn

Solution. We claim that the permutations of the form σ = θ · τ ∈ Sn, θ ∈ N((1, 2)(3, 4)) ⊂
S4 and τ ∈ Sn is a permutation leaving all of 1, 2, 3, 4 fixed are the elements in Sn which
commute with (1, 2)(3, 4). Clearly, σ commutes with (1, 2)(3, 4). Moreover, there are
(n − 4)! distinct τ in Sn and 8 distinct elements in N((1, 2)(3, 4)). Hence, 8 · (n − 4)!

distinct σ are in Sn. Note that the order of N((1, 2)(3, 4)) in Sn is
n!

n!

8 · (n− 4)!

= 8 ·(n−4)!.

Therefore, we established every possible cases of the elements of N((1, 2)(3, 4) in Sn. Hence,
our claim is proved.

7. If p is a prime number, show that in Sp there are (p − 1)! + 1 elements x satisfying
xp = e.

Proof. Note that if p is prime, any σ ∈ Sp having order p must be a cycle of length p. Since
there are (p− 1)! distinct p-cycles in Sp and ep = e, there are (p− 1)! + 1 elements x ∈ Sn
satisfy xp = e.

8. If in a finite group G an element a has exactly two conjugates, prove that G has a
normal subgroup N 6= (e), G.

Proof. Suppose a ∈ G has exactly two conjugates in G. Then [G : N(a)] = 2 so that N(a)
is a non-trivial normal subgroup in G.

9. a) Find two elements in A5, the alternating group of degree 5, which are conjugates in
S5 but not in A5.

Solution. First we verify the existence of such two elements in A5. Note that the size of
conjugacy class of (1, 2, 3, 4, 5) in S5 is 4! = 24. But since size of every conjugacy class
of an element of group must divide the order of the group, as 24 - 60, there must be two
permutations in A5 which are not conjugate to each other. We claim that (1, 2, 3, 4, 5) and
(1, 2, 3, 4, 5)2 = (1, 3, 5, 2, 4) are two non-conjugate 5 cycles. Suppose they were conjugate,
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there must be a σ ∈ A5 such that σ−1(1, 2, 3, 4, 5)σ = (1, 3, 5, 2, 4). From this we see that
σ must fix 1, so σ is a permutation moving only in {2, 3, 4, 5}. Observe that if

σ = (2, 3, 4) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 3, 4, 2, 5),

σ = (2, 4, 3) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 4, 2, 3, 5),

σ = (2, 3, 5) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 3, 5, 4, 2),

σ = (2, 5, 3) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 5, 2, 4, 3),

σ = (2, 4, 5) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 4, 3, 5, 2),

σ = (2, 5, 4) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 5, 3, 2, 4),

σ = (3, 4, 5) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 2, 4, 5, 3),

σ = (3, 5, 4) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 2, 5, 3, 4),

σ = (2, 3)(4, 5) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 3, 2, 5, 4),

σ = (2, 4)(3, 5) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 4, 5, 2, 3),

σ = (2, 5)(3, 4) =⇒ σ−1(1, 2, 3, 4, 5)σ = (1, 5, 4, 3, 2)

so that none of the cases yields (1, 3, 5, 2, 4). Hence, (1, 2, 3, 4, 5) and (1, 3, 5, 2, 4) are the
permutations which are not conjugate in A5(Instead of brief proof, I made a brute force
calculation since this calculations will be made use in next Problem).

b) Find all the conjugate classes in A5 and the number of elements in each conjugate class.

Solution. The conjugate classes in A5 are:

C(id) = {id},
C((1, 2, 3)) = {(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 2, 5), (1, 5, 2), (1, 3, 4),

(1, 4, 3), (1, 3, 5), (1, 5, 3), (1, 4, 5), (1, 5, 4), (2, 3, 4), (2, 4, 3),

(2, 3, 5), (2, 5, 3), (2, 4, 5), (2, 5, 4), (3, 4, 5), (3, 5, 4)},
C((1, 2)(3, 4)) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (2, 3)(4, 5), (2, 4)(3, 5),

(2, 5)(3, 4), (1, 3)(4, 5), (1, 4)(3, 5), (1, 5)(3, 4), (1, 2)(4, 5),

(1, 4)(2, 5), (1, 5)(2, 4), (1, 2)(3, 5), (1, 3)(2, 5), (1, 5)(2, 3)},
C((1, 2, 3, 4, 5)) = {(1, 2, 3, 4, 5), (1, 3, 4, 2, 5), (1, 4, 2, 3, 5), (1, 3, 5, 4, 2), (1, 5, 2, 4, 3),

(1, 4, 3, 5, 2), (1, 5, 3, 2, 4), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 3, 2, 5, 4),

(1, 4, 5, 2, 3), (1, 5, 4, 3, 2)},
C((1, 3, 5, 2, 4)) = {(1, 3, 5, 2, 4), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5),

(1, 3, 4, 5, 2), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4),

(1, 5, 3, 4, 2), (1, 5, 4, 2, 3)}.
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Consequently,

cid = 1, c(1,2,3) = 20, c(1,2)(3,4) = 15, c(1,2,3,4,5) = 12, c(1,3,5,2,4,) = 12.

10. a) If N is a normal subgroup of G and a ∈ N , show that every conjugate of a in G is
also in N .

Proof. Let a ∈ N . Since N is normal, for any its conjugate gag−1, gag−1 ∈ N .

b) Prove that o(N) =
∑
ca for some choices of a in N .

Proof. We prove that if N is normal, it is union of conjugacy classes of G. We denote
the conjugacy class of any n ∈ N in G as C(n). Then by above problem a), C(n) ⊂ N
for all n ∈ N . Clearly,

⋃
n∈N C(n) ⊂ N . Note that for any n ∈ N , n ∈ C(n) so

that N ⊂
⋃
n∈N C(n). Thus, N =

⋃
n∈N C(n). Denote the size of C(a) as ca. Hence,

o(N) =
∑
ca for some choices of a ∈ N .

† Remark: This problem implies that any normal group N can be expressed as union
of conjugacy classes of G, but does not imply that this partition derived from G is the
conjugate partition of N . In fact, from Problem 9, we can see that the conjugate partition
of A5 is not that of S5.

c) Using this and the result for Problem 9b), prove that in A5 there is no normal subgroup
N other than (e) and A5.

Proof. Note that the conjugacy class sizes of A5 are: 1,12,12,20,15. Since any non-trivial
normal subgroup must contain conjugacy class of size 1(the identity) and one or more
other conjugacy class, the possible order of such normal group is given by the summations
of such conjugacy sizes. By simple calculations, the possible candidates for the order of
the normal subgroups are: 13,16,21,25,28,33,36,40,45,48,60. Now applying the Lagrange’s
theorem, the only possible non-trivial normal subgroup is A5 itself. Hence A5 is simple.

11. Using Theorem 2.11.2 as a tool, prove that if o(G) = pn, p a prime number, then G
has a subgroup of order pα for all 0 ≤ α ≤ n.

Proof. We make induction on the order of group G with o(G) = pn. If n = 1, this trivially
satisfies our hypothesis. Also, if α = 0, there is no more to say. Thus, suppose every
p-group of order pn−1, has a subgroup of order pα for all 1 ≤ α ≤ n−1. Let o(G) = pn. We
know that every p-group has non-trivial centre. By applying Cauchy’s theorem, we have
an b ∈ Z(G) with order p. Let B = (b). Since b ∈ Z(G), B is normal in G. Thus, con-
sidering the factor group G/B, o(G/B) = pn−1. Now by our induction hypothesis, there
is a subgroup P of G/B with order pa−1, 0 ≤ a− 1 ≤ n− 2. Let P = {x ∈ G : xZ ∈ P}.
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Clearly P is a subgroup of G, and by second isomorphism theorem, P ' P/Z(G). Thus,
P is a subgroup of order pa, 1 ≤ a ≤ n − 1. Thus by induction process, we have proved
that every p-group has a subgroup of order pα for all 0 ≤ α ≤ n, for any n.

† Remark: Note that the problem still holds even if we have considered subgroup to be
”NORMAL”. Procedure for the proof is exactly the same.

12. If o(G) = pn, p a prime number, prove that there exist subgroups Ni, i = 0, 1, · · · , r
(for some r) such that G = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nr = (e) where Ni is a normal subgroup
of Ni−1 and where Ni−1/Ni is abelian.

Proof. We make use of the Problem 11. Since o(G) = pn, we have a normal subgroup N1

of order pn−1. Since G/N1 is of order p, the factor group is cyclic and hence abelian. Now
since o(N1) = pn−1, it again has a normal(in N1) subgroup N2 of order pn−2 and N1/N2

is clearly abelian. Continuing this process, we have series of Ni’s satisfying the conditions
given in the problem, i.e. G is solvable.

13. If o(G) = pn p a prime number, and H 6= G is a subgroup of G, show that there exists
an x ∈ G, x 6∈ H such that x−1Hx = H.

Proof. Let S be a set of all left cosets of H. We consider a left group action from H on S
defined by:

h · (xH) = (hx)H.

Note that the orbit of H under such group action is OrbH(H) = {H} so that |OrbH(H)| =
1. But since H has order a multiple of p, there must be also another orbit of xH ∈ S with
its size not a multiple of p, that is, 1. Hence, for some x 6∈ H, |OrbH(xH)| = 1. Thus, for
any h ∈ H, hxH = xH so that x−1hxH = H. This further implies that x−1hx ∈ H for all
h ∈ H, where x ∈ H. Therefore, x−1Hx = H where x 6∈ H.

14. Prove that any subgroup of order pn−1 in a group of G order pn, p a prime number, is
normal in G.

Proof. Note thatN(H) is a subgroup ofG andH ⊂ N(H). By the Problem 13, H � N(H).
Since o(H) = pn−1, it is must that N(H) = G, and hence, H is normal in G.

15. If o(G) = pn, p a prime number, and if N 6= (e) is a normal subgroup of G, prove that
N ∩ Z 6= (e), where Z is the center of G.

Proof. Suppose N is non-trivial subgroup of G. From the Problem 10 b), we know that
N is an union of its conjugacy classes of G. In particular, e ∈ N . Since the size of every
conjugacy classes must be a power of p, and N being a subgroup of p-group, it must admit
one or more conjugacy class of size 1. That is, there is an a ∈ N , where gag−1 = a for all
g ∈ G.
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16. If G is a group, Z its center, and if G/Z is cyclic, prove that G must be abelian.

Proof. Suppose G/Z(G) is cyclic, then we can write G/Z(G) = (aZ) for some a ∈ G. Note
that for any x ∈ G lies in one of the coset akZ. Thus, we can represent x as x = ak1z1,
y = ak2z2 for some k1, k2 ∈ Z and z1, z2 ∈ Z(G). Consequently,

xy = (ak1z1)(a
k2z2) = ak1(z1a

k2)z2 = ak1ak2z1z2 = ak1+k+2z1z2,

while

yx = (ak2z2)(a
k1z1) = ak2(z2a

k1)z1 = ak2ak1z2z1 = ak1+k2z1z2,

so that xy = yx. Hence, G is abelian.

17. Prove that any group of order 15 is cyclic.

Proof. Apply Cauchy’s theorem to obtain elements of order 3 and 5 respectively. Note
that 3 - 4 = 5− 1, so by the Problem 10 of Section 2.9, the given group is cyclic.

18. Prove that a group of order 28 has a normal subgroup of 7.

Proof. By Cauchy’s theorem, we have an element of order 7. Let H be the subgroup
generated by this element. Then since 28 - 4! = 24, H must contain a non-trivial normal
subgroup. Since H is of prime order, H itself is the normal subgroup. Hence proved.

19. Prove that if a group G of order 28 has a normal subgroup of order 4, then G is abelian.

Proof. Suppose H be the subgroup of G with order 7 and K be the normal subgroup of G
of order 4. Note H is always normal in G. Then since gcd(4, 7) = 1, H and K are normal,
HK is abelian and HK = G so that G is abelian.
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