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Problems in the Section 2.10.

1. Find the orbits and cycles of the following permutations:

a)

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8

)
.

Solution. Orb(1) = {1, 2, 3, 4, 5}, Orb(6) = {6}, Orb(7) = {7}, Orb(8) = {8, 9}. Cycles:
(1, 2, 3, 4, 5), (8, 9).

b)

(
1 2 3 4 5 6
6 5 4 3 1 2

)
.

Solution. Orb(1) = {1, 6, 2, 5}, Orb(3) = {3, 4}. Cycles: (1, 6, 2, 5), (3, 4).

2. Write the permutations in Problem 1 as the product of disjoint cycles.

Solution. For a), (1, 2, 3, 4, 5)(8, 9). For b), (1, 6, 2, 5)(3, 4).

3. Express as the product of disjoint cycles:
a) (1, 2, 3)(4, 5)(1, 6, 7, 8, 9)(1, 5).

Solution. (1, 2, 3)(4, 5)(1, 6, 7, 8, 9)(1, 5) = (1, 2, 3, 6, 7, 8, 9, 5, 4).

b) (1, 2)(1, 2, 3)(1, 2).

Solution. (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2).

4. Prove that (1, 2, · · · , n)−1 = (n, n− 1, n− 2, · · · , 2, 1).

Proof. Let σ = (1, 2, · · · , n). Considering σ as a bijective function,

σ · (n, n− 1, n− 2, · · · , 2, 1)(k) = (n, n− 1, n− 2, · · · , 2, 1) · σ(k) = k for all 1 ≤ k ≤ n.

Therefore, σ−1 = (1, 2, · · · , n)−1 = (n, n− 1, n− 2, · · · , 2, 1).
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5. Find the cycle structure of all the powers of (1, 2, · · · , 8).

Solution. Note that

(1, 2, · · · , 8)1 = (1, 2, · · · , 8),

(1, 2, · · · , 8)2 = (1, 3, 5, 7)(2, 4, 6, 8),

(1, 2, · · · , 8)3 = (1, 4, 7, 2, 5, 8, 3, 6),

(1, 2, · · · , 8)4 = (1, 5)(2, 6)(3, 7)(4, 8),

(1, 2, · · · , 8)5 = (1, 6, 3, 8, 5, 2, 7, 4),

(1, 2, · · · , 8)6 = (1, 7, 5, 3)(2, 8, 6, 4),

(1, 2, · · · , 8)7 = (8, 7, 6, 5, 4, 3, 2, 1),

(1, 2, · · · , 8)8 = id.

6. a) What is the order of an n-cycle?

Proof. Order of n-cycle is n. Let σ = (a1, a2, · · · , an) be an n-cycle. Then

σi(ak) = a(k+i) mod n, (1 ≤ i)

so that σi(ak) = ak ⇐⇒ ak = a(k+i) mod n, i ≡ 0 (mod n). If i was to be the order of σ,
it is must that i = n. Therefore, the order of an n-cycle is n.

b) What is the order of the product of the disjoint cycles of lengths m1,m2, · · · ,mk?

Proof. We prove that the order of given permutation is lcm(m1,m2, · · · ,mk). Let s =
lcm(m1,m2, · · · ,mk). Denote the disjoint cycles of lengths mi by σi, 1 ≤ i ≤ k. Let
σ = σ1σ2 · · ·σk. Suppose n is the order of σ. Using the fact that each σi are disjoint(and
also commutative), we have

e = σn = (σ1σ2 · · ·σk)n = σn1σ
n
2 · · ·σnk =⇒ σni = e,

=⇒ mi | n, lcm(m1,m2, · · · ,mk) = s ≤ n.

Moreover,

σs = (σ1σ2 · · ·σk)s = σs1σ
s
2 · · ·σsk = e

so that n ≤ s. This proves that n = s = lcm(m1,m2, · · · ,mk).

c) How do you find the order of a given permutation?
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Solution. Express the permutation into product of disjoint cycles, find the length(order)
of each cycles and compute their least common multiple. This yields the order of given
permutation.

7. Compute a−1ba, where
1) a = (1, 3, 5)(1, 3), b = (1, 5, 7, 9).

Solution. a−1ba = (2, 7, 9, 3).

2) a = (5, 7, 9), b = (1, 2, 3).

Solution. a−1ba = (1, 2, 3).

8. a) Given the permutation x = (1, 2)(3, 4), y = (5, 6)(1, 3), find a permutation a such
that a−1xa = y.

Solution. Let a = (4, 3, 1, 5)(2, 6). By a simple calculation, a−1xa = y.

b) Prove that there is no a such that a−1(1, 2, 3)a = (1, 3)(5, 7, 8).

Proof. Note that sgn(a−1(1, 2, 3)a) ≡ 0 (mod 2) while sgn((1, 3)(5, 7, 8)) ≡ 1 (mod 2).
Thus, there is no a satisfying the given relation.

c) Prove that there is no permutation a such that a−1(1, 2)a = (3, 4)(1, 5).

Proof. Note that sgn(a−1(1, 2)a) ≡ 1 (mod 2) while sgn((3, 4)(1, 5)) ≡ 0 (mod 2). Thus,
there is no a satisfying the given relation.

9. Determine for what m an m-cycle is an even permutation.

Solution. Note that every permutation is the product of transpositions. Let σ = (a1, a2, · · · , am)
be an m-cycle. Then

σ = (a1, a2, · · · , am) = (a1, a2)(a1, a3) · · · (a1, am)

where RHS is product of m− 1 transpositions. Thus, whenever m − 1 is even, that is, m
is odd, the given m-cycle is an even permutation.

10. Determine which of the following are even permutations.
a) (1, 2, 3)(1, 2).

Solution. It is an odd permutation.

b) (1, 2, 3, 4, 5)(1, 2, 3)(4, 5).

Solution. It is an odd permutation.
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c) (1, 2)(1, 3)(1, 4)(2, 5).

Solution. It is an even permutation.

11. Prove that the smallest subgroup of Sn containing (1, 2) and (1, 2, · · · , n) is Sn. (In
other words, these generate Sn.)

Proof. Let σ = (1, 2, · · · , n). Note that for any integer j, 1 ≤ j ≤ n,

σ−j(1, 2)σj = (j, j + 1).

Moreover,

(2, 3)(1, 2)(2, 3) = (1, 3),

(3, 4)(1, 3)(3, 4) = (1, 4),

...

(n− 1, n)(1, n− 1)(n− 1, n) = (1, n).

Repeating the similar process by interchanging the role of (1, 2) by (2, 3), (3, 4, ), · · · , we
can generate (2, n), (3, n), · · · , (n − 1, n). Let (i, j) be an arbitrary transposition. Since
every permutation is a product of transpositions, it is enough to show that (i, j) can be
generated. Observe that

(i, j) = (i, n)(j, n)(i, n),

so that (i, j) can be generated with (1, 2) and (1, 2, · · · , n). Therefore, ((1, 2), (1, 2, · · · , n)) =
Sn.

12. Prove that for n ≥ 3 the subgroup generated by the 3-cycles is An.

Proof. Let H be the set of all 3-cycles. Clearly H ⊂ An. It is enough to show that the
permutations (i, j)(k, l), (i, j)(j, k) ∈ An are in H. Note that

(i, j)(k, l) = (i, k, j)(k, j, l), (i, j)(j, k) = (i, k, j)

so that An ⊂ H. Therefore, H = An.

13. Prove that if a normal subgroup of An contains even a single 3-cycle it must be all of
An.

Proof. It is enough to show that such N contains every possible 3-cycles of An. The case
for S3 is trivial since (1, 2, 3) ∈ N, =⇒ (1, 3, 2) = (1, 2, 3)2 ∈ N . Now consider the case
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n ≤ 4. Suppose (a, b, c) ∈ N . We show that (a, b, d) is in N for any d 6= a, b, c. Observe
that

(a, b, d) = (a, b)(c, d)(a, b, c)2[(a, b)(c, d)]−1 ∈ N.

This implies that, a 3-cycle with at most one element interchanged from a, b, c is still in
N . Now we consider the case (a, d, e) where d, e 6= a, b, c. Note that

(a, d, e) = (a, b, d)2(a, b, e) ∈ N

so that a 3-cycle with at most two elements different from a, b, c is in N . Finally, we
are left with case (d, e, f) where d, e, f 6= a, b, c. Note that (a, d, e) ∈ N , (a, d, f) ∈ N .
Consequently,

(d, e, f) = ((a, d, f)(a, e, d))2 = (d, f, e)2 ∈ N.

Therefore, we can conclude that every 3-cycles is contained in the normal subgroup N .
Applying the Problem 12, we have that N = An. Hence proved.

14. Prove that A5 has no normal subgroups N 6= (e), A5.

Proof. We introduce two proofs, one with most elementary approach and the other one
using the conjugacy class.
(Elementary proof) There are 5 cases that the normal subgroup N of An can have:
1) If N contains a 3 cycle: Apply the Problem 13. Then we have N = A5.
2) If N contains a product of disjoint cycles, with at least one has length greater than 3.
That is, σ = µ(a1, a2, a3, · · · , ar) ∈ N . In this case, note that

σ−1[(a1, a2, a3)σ(a1, a2, a3)
−1] = (a1, a3, a4) ∈ N,

so that applying the Problem 12 again, we obtain N = A5.
3) If N contains a product of disjoint cycles where σ = µ(a4, a5, a6)(a1, a2, a3). Observe
that

σ−1[(a1, a2, a4)σ(a1, a2, a4)
−1] = (a1, a4, a2, a3, a5) ∈ N

so that this is the same case of case 2). Hence, N = A5 again.
4) If N contains a product of disjoint cycles where σ = µ(a1, a2, a3) where µ is product of
disjoint transpositions. Observe that

σ2 = µ2(a1, a2, a3)
2 = (a1, a3, a2) ∈ N

so that applying Problem 12, we have N = A5.
5) If N contains a permutations of the form σ = µ(a3, a4)(a1, a2) where µ is product of
even number of disjoint transpositions. Note that

σ−1[(a1, a2, a3)σ(a1, a2, a3)
−1] = (a1, a4)(a2, a3) ∈ N.
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Since n = 5, there exists a5 6= ai, i = 1, 2, 3, 4. Let τ = (a1, a3, a5). Observe that

τ−1(a1, a4)(a2, a3)τ(a1, a4)(a2, a3) = (a1, a4, a2, a5, a3) ∈ N

and similarly with the case 2), we have N = A5.
Therefore, we can conclude that A5 has no normal subgroups other than (e) or A5 itself(A5

is simple).

(Proof using conjugacy class) Note that the conjugacy class sizes of A5 are: 1,12,12,20,15.
Since any non-trivial normal subgroup must contain conjugacy class of size 1(the identity)
and one or more other conjugacy class, the possible order of such normal group is given
by the summations of the conjugacy sizes. By simple calculations, the possible candidates
for the order of the normal subgroups are: 13,16,21,25,28,33,36,40,45,48,60. Now applying
the Lagrange’s theorem, the only possible non-trivial normal subgroup is A5 itself. Hence
A5 is simple.

15. Assuming the result of Problem 14, prove that any subgroup of A5 has order at most
12.

Proof. Suppose there exists a subgroup H of order 30. But since [A5 : H] = 2, H is normal
in A5, contradiction to the fact that A5 is simple. Suppose there is a subgroup H of order
20. Then [G : H] = 3, 60 - 3! = 6 so that H contains a non-trivial normal subgroup of
A5. But this is also a contradiction. Similarly for H of order 15. Since [G : H] = 4 and
60 - 4! = 24, A5 admits a non-trivial normal subgroup, hence a contradiction. Also note
that A4 ⊂ A5, where o(A4) = 12. Therefore, any subgroup of A5 has order at most 12.

16. Find all the normal subgroups in S4.

Solution. There are 4 normal subgroups of S4: The whole group, trivial group (e), A4 and
normal Klein-4 group = {id, (12)(34), (13)(24), (14)(23)}.

17. If n ≥ 5 prove that An is the only nontrivial normal subgroup in Sn.

Proof. We introduce some useful lemmas:

Lemma. 1. The commutator subgroup of Sn, n ≥ 3 is An.
⇒ Note that every elements of the form στσ−1τ−1 where σ, τ ∈ Sn is even permutations.
Thus, S′n ⊂ An. Now, observe that

(1, 3, 2)(1, 2)(1, 3, 2)−1(1, 2)−1 = (1, 2, 3) ∈ S′n.

Since every commutator subgroup is a normal subgroup, and S′n ⊂ An, applying the result
of Problem 13 we have S′n = An. Hence proved.
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Lemma. 2. The symmetric group Sn, n ≥ 3 has trivial center. That is, Z(Sn) = (e).
⇒ Let σ 6= id,∈ Sn. Suppose σ maps i to j. Since n ≥ 3, we can choose k 6= i, j and
a permutation τ ∈ Sn such that τ maps k into i. Then clearly τστ−1 maps k into j so
that τστ−1 6= σ. This shows that no element σ ∈ Sn lies in the center Z(Sn). Therefore,
Z(Sn) = (e).

Lemma. 3. Suppose H is a normal subgroup of G and H ∩ G′ = (e), where G′ is the
commutator subgroup of G. Then H ⊂ Z(G).
⇒ Let h ∈ H and g ∈ G. Since ghg−1 ∈ H and h−1 ∈ H, so does ghg−1h−1 ∈ H. But
ghg−1h−1 ∈ G′ also. Since H ∩ G′ = (e), it is must that ghg−1h−1 = e ⇐⇒ gh = hg.
Therefore, h ∈ Z(G) and hence H ⊂ Z(G).

Lemma. 4. For n ≥ 5, the alternating group An is simple.
⇒ We know that A5 is simple. Now, for the sake of contradiction, assume that there is
a nontrivial normal subgroup N of An, n ≥ 6. Let σ ∈ N which is the permutation with
maximal number of fixed points, that is, iσ = i. We prove that σ is 3-cycle or an identity.
Suppose then decompose Jn = {1, 2, · · · , n} into the orbits of σ. Suppose σ has only two
elements for each orbits(except for fixed points). Then since σ is of even permutation, it
must have at least two such (distinct) orbits. Then σ can be represented as

σ = µ(i, j)(k, l)

where µ is disjoint with (i, j), (k, l). Now consider τ = (k, l,m) where m 6= i, j, k, l. Then

σ′ = τστ−1σ−1

fixes i, j and possibly the rest of t ∈ Jn−{i, j, k, l,m}. Therefore, σ′ fixes at least one more
elements in Jn then σ, contradicting that σ is the permutation with maximal number of
fixed points. Hence, N admits a 3-cycle and consequently, N = An. Thus, An is simple for
n ≥ 5.(In fact, this proof is a generalization of the elementary method used for Problem
15)

Now suppose there is a non-trivial normal subgroup H of Sn. Since the intersection of
two normal subgroups is also normal, H ∩An is normal. But as An is simple by lemma 4,
H ∩ An = (e). Now applying the lemma 1 and lemma 3 , H ⊂ Z(Sn). Applying lemma 2
now, H ⊂ Z(Sn) = (e). Thus, H = (e), a contradiction. Hence An is the only nontrivial
normal subgroup of Sn.

18. Find the permutation representation of a cyclic group of order n.

Solution. Let G be the cyclic group of order n. Let a ∈ G be the generator. Then G can
be written in a cycle form if we represent G by {1, 2, · · · , n} in the following way:(

1 2 · · · n
e a · · · an−1

)
.
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Using the notation of the theorem 2.9.1 we have:

τe = id,

τa = (1, 2, · · · , n),

τa2 = (1, 2, · · · , n)2,

τak = (1, 2, · · · , n)k,

τan−1 = (n, n− 1, · · · , 1).

Hence, the permutation representation of G is given by ((1, 2, · · · , n)).

19. Let G be the group {e, a, b, ab} of order 4, where a2 = b2 = e, ab = ba. Find the
permutation representation of G.

Solution. We shall write G is a cycle-form by representing G by {1, 2, 3, 4} in the following
way: (

1 2 3 4
e a b ab

)
.

Using the notation of the theorem 2.9.1 we have:

τe = id,

τa = (1, 2)(3, 4),

τb = (1, 3)(2, 4),

τab = (1, 4)(2, 3).

Hence, the permutation representation of G is given by V4, where

V4 = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} .

20. Let G be the group S3. Find the permutation representation of S3.(Note: This gives
an isomorphism of S3 into S6.

Solution. Note that S3 = {e, y, y2, x, xy, xy2}. We represent G in a cycle-form by repre-
senting it by {1, 2, 3, 4, 5, 6} in the following way:(

1 2 3 4 5 6
e y y2 x xy xy2

)
.
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Using the notation of the theorem 2.9.1 we have:

τe = id,

τy = (1, 2, 3)(4, 5, 6),

τy2 = (1, 3, 2)(4, 6, 5),

τx = (1, 4)(2, 6)(3, 5),

τxy = (1, 5)(2, 4)(3, 6),

τxy2 = (1, 6)(2, 5)(3, 4).

Hence, the permutation representation of G is given by:

S3 = {id, (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5), (1, 4)(2, 6)(3, 5), (1, 5)(2, 4)(3, 6), (1, 6)(2, 5)(3, 4)}

in S6.

21. Let G be a group {e, θ, a, b, c, θa, θb, θc}, where a2 = b2 = c2 = θ, θ2 = e, ab = θba = c,
bc = θcb = a, ca = θac = b.
a) Show that θ is in the center Z of G, and that Z = {e, θ}.

Proof. Note that θa = a3 = a · a2 = aθ, (θa)θ = a5 = a2 · (a2 · a) = θ(θa). This holds for
b, c also. Hence, θ ∈ Z. But note that in general, ab = c 6= θc = ba. Hence, Z = {e, θ}.

b) Find the commutator subgroup of G.

Proof. Note that aba−1b−1 = ab(θa)(θb) = ab(ab) = c2 = θ. Also, a(θb)a−1(θb)−1 =
a(θb)(θa)b = abab = θ. And aea−1e = e. This holds even if we change the role a, b into
any two other elements of a, b, c. Hence, the commutator group G′ is exactly Z.

c) Show that every subgroup of G is normal.

Proof. There are only 4 non-trivial subgroups of G: Z, {e, θ, a, θa}, {e, θ, b, θb}, {e, θ, c, θc}.
Z is clearly normal in G, and the rest are of index 2 in G. Therefore normal. Thus, every
subgroup of G is normal.

d) Find the permutation representation of G.

Solution. We represent G in a cycle-form by representing it by {1, 2, 3, 4, 5, 6, 7, 8} in the
following way: (

1 2 3 4 5 6 7 8
e θ a b c θa θb θc

)
.
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Using the notation of the theorem 2.9.1 we have:

τe = id,

τθ = (1, 2)(3, 6)(4, 7)(5, 8),

τa = (1, 3, 2, 6)(4, 8, 7, 5),

τb = (1, 4, 2, 7)(3, 5, 6, 8),

τc = (1, 5, 2, 8)(3, 7, 6, 4),

τθa = (1, 6, 2, 3)(4, 5, 7, 8),

τθb = (1, 7, 2, 4)(3, 8, 6, 5),

τθc = (1, 8, 2, 5)(3, 4, 6, 7).

Hence, the permutation representation of G is given by:

G = {id, (1, 2)(3, 6)(4, 7)(5, 8), (1, 3, 2, 6)(4, 8, 7, 5), (1, 4, 2, 7)(3, 5, 6, 8),

(1, 5, 2, 8)(3, 7, 6, 4), (1, 6, 2, 3)(4, 5, 7, 8), (1, 7, 2, 4)(3, 8, 6, 5), (1, 8, 2, 5)(3, 4, 6, 7)}.

in S8.

22. Let G be the dihedral group of order 2n (see Problem 27, Section 2.6). Find the
permutation representation of G.

Solution. Recall that D2n = {e, y, · · · , yn−1, x, xy, · · · , xyn−1.}. We represent G in a cycle-
from by representing it by {1, 2, · · · , n, n+ 1, · · · , 2n} in the following way:(

1 2 · · · n n+ 1 n+ 2 · · · 2n
e y · · · yn−1 x xy · · · xyn−1

)
.
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Using the notation of the theorem 2.9.1 we have:

τe = id,

τy = (1, 2, · · · , n)(n+ 1, n+ 2, · · · , 2n),

τy2 = (1, 2, · · · , n)2(n+ 1, n+ 2, · · · , 2n)2,

...

τyn−1 = (n, n− 1, · · · , 2, 1)(2n, 2n− 1, · · · , n+ 2, n+ 1),

τx = (1, n+ 1)(2, 2n)(3, 2n− 1) · · · (n− 1, n+ 3)(n, n+ 2),

τxy = τxτy = [(1, n+ 1)(2, 2n) · · · (n, n+ 2)] · [(1, 2, · · · , n)(n+ 1, n+ 2, · · · , 2n)]

= (1, n+ 2)(2, n+ 1)(3, 2n)(4, 2n− 1) · · · (n− 1, n+ 4)(n, n+ 3),

τxy2 = τxτy2 = [(1, n+ 1)(2, 2n) · · · (n, n+ 2)] · [(1, 2, · · · , n)2(n+ 1, n+ 2, · · · , 2n)2]

= (1, n+ 3)(2, n+ 2)(3, n+ 1)(4, 2n)(5, 2n− 1) · · · (n− 1, n+ 5)(n, n+ 4),

...

τxyn−1 = (1, 2n)(2, 2n− 1) · · · (n− 1, n+ 2)(n, n+ 1).

Here we used the fact that τxy = τx · τy. Now the group of collection of all above permu-
tations is the permutation representation of G in S2n.

23. Show that if G is an abelian group, then the permutation representation of G coin-
cides with the second permutation representation of G(i.e., in the notation of the previous
section, λg = τg for all g ∈ G.

Proof. It is enough to show that xλg = xτg for all x ∈ G for each g ∈ G. Since G is
abelian, for each fixed g ∈ G, xλg = gx = xg = xτg for all x ∈ G. Hence, the permutation
representation of G coincides with the second permutation representation of G.

24. Find the second permutation representation of S3. Verify directly from the permuta-
tions obtained here and in Problem 20 that λaτb = τbλa for all a, b ∈ S3.

Solution. Note that S3 = {e, y, y2, x, xy, xy2}. We represent G in a cycle-form by repre-
senting it by {1, 2, 3, 4, 5, 6} in the following way:(

1 2 3 4 5 6
e y y2 x xy xy2

)
.
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Using the λg = gx for the imbedding into S6, we have

λe = id,

λy = (1, 2, 3)(4, 6, 5),

λy2 = (1, 3, 2)(4, 5, 6),

λx = (1, 4)(2, 5)(3, 6),

λxy = (1, 5)(2, 6)(3, 4),

λxy2 = (1, 6)(2, 4)(3, 5).

Hence, the permutation representation of G is given by:

S3 = {id, (1, 2, 3)(4, 6, 5), (1, 3, 2)(4, 5, 6), (1, 4)(2, 5)(3, 6), (1, 5)(2, 6)(3, 4), (1, 6)(2, 4)(3, 5)}

in S6. Now we check if λaτb = τbλa for all a, b ∈ S3. It is enough to show that the above
equation holds for generators x and y. Observe that

λxτy = (1, 4)(2, 5)(3, 6) · (1, 2, 3)(4, 5, 6) = (1, 5, 3, 4, 2, 6)

= (1, 2, 3)(4, 5, 6) · (1, 4)(2, 5)(3, 6) = τyλx,

λyτx = (1, 2, 3)(4, 6, 5) · (1, 4)(2, 6)(3, 4) = (1, 6, 3, 4, 2, 5)

= (1, 4)(2, 6)(3, 4) · (1, 2, 3)(4, 6, 5) = τxλy,

λxτx = (1, 4)(2, 6)(3, 5) · (1, 4)(2, 5)(3, 6) = (2, 3)(5, 6)

= (1, 4)(2, 5)(3, 6) · (1, 4)(2, 6)(3, 5) = τxλx,

λyτy = (1, 2, 3)(4, 5, 6) · (1, 2, 3)(4, 6, 5) = (1, 3, 2)

= (1, 2, 3)(4, 6, 5) · (1, 2, 3)(4, 5, 6) = τyλy,

so that λaτb = τbλa for all a, b ∈ S3.

25. Find the second permutation representation of the group G defined in Problem 21.

Solution. We represent G in a cycle-form by representing it by {1, 2, 3, 4, 5, 6, 7, 8} in the
following way: (

1 2 3 4 5 6 7 8
e θ a b c θa θb θc

)
.
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Using the λg = gx for the imbedding into S8, we have

λe = id,

λθ = (1, 2)(3, 6)(4, 7)(5, 8),

λa = (1, 3, 2, 6)(4, 5, 7, 8),

λb = (1, 4, 2, 7)(3, 8, 6, 5),

λc = (1, 5, 2, 8)(3, 4, 6, 7),

λθa = (1, 6, 2, 3)(4, 8, 7, 5),

λθb = (1, 7, 2, 4)(3, 5, 6, 8),

λθc = (1, 8, 2, 5)(3, 7, 6, 4).

Hence, the permutation representation of G is given by:

G = {id, (1, 2)(3, 6)(4, 7)(5, 8), (1, 3, 2, 6)(4, 5, 7, 8), (1, 4, 2, 7)(3, 8, 6, 5),

(1, 5, 2, 8)(3, 4, 6, 7), (1, 6, 2, 3)(4, 8, 7, 5), (1, 7, 2, 4)(3, 5, 6, 8), (1, 8, 2, 5)(3, 7, 6, 4)}

in S8.

26. Find the second permutation representation of the dihedral group of order 2n.

Solution. Recall that D2n = {e, y, · · · , yn−1, x, xy, · · · , xyn−1.}. We represent G in a cycle-
from by representing it by {1, 2, · · · , n, n+ 1, · · · , 2n} in the following way:(

1 2 · · · n n+ 1 n+ 2 · · · 2n
e y · · · yn−1 x xy · · · xyn−1

)
.

Using the λg = gx for the imbedding into S2n, we have

λe = id,

λy = (1, 2, · · · , n)(2n, 2n− 1, · · · , n+ 2, n+ 1),

λy2 = (1, 2, · · · , n)2(2n, 2n− 1, · · · , n+ 2, n+ 1)2,

...

λyn−1 = (n, n− 1, · · · , 2, 1)(n+ 1, n+ 2, · · · , 2n− 1, 2n),

λx = (1, n+ 1)(2, n+ 2) · · · (n, 2n),

λxy = [(1, 2, · · · , n)(2n, 2n− 1, · · · , n+ 2, n+ 1)] · [(1, n+ 1)(2, n+ 2) · · · (n, 2n)],

λxy2 = [(1, 2, · · · , n)2(2n, 2n− 1, · · · , n+ 2, n+ 1)2] · [(1, n+ 1)(2, n+ 2) · · · (n, 2n)],

...

λxyn−1 = (n, n− 1, · · · , 2, 1)(n+ 1, n+ 2, · · · , 2n− 1, 2n) · (1, n+ 1)(2, n+ 2) · · · (n, 2n).

Here we used the fact that λxy = λyλx to compute the permutations. Now the group of
collection of all above permutations is the permutation representation of G in S2n.
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27. Let G = (a) be a cyclic group of order 8 and let H = (a4) be its subgroup of order 2.
Find the coset representation of G by H.

Solution. Let S be the set of right cosets of H in G. That is, S = {H,Ha,Ha2, Ha3}.
From the mapping τg : S → S defined as (Ha)g = H(ag), we can rewrite it as in the
cycle-form if we represent S by {1, 2, 3, 4} in the following way:(

1 2 3 4
H Ha Ha2 Ha3

)
.

Therefore, ta = (1, 2, 3, 4). From the fact that tai = (ta)
i,

τe = τa4 = id,

τa = τa5 = (1, 2, 3, 4),

τa2 = τa6 = (1, 3)(2, 4),

τa3 = τa7 = (1, 4, 3, 2).

Thus, the coset representation of G is given by : {id, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

28. Let G be the dihedral group of order 2n generated by elements a, b such that a2 =
bn = e, ab = b−1a. Let H = {e, a}. Find the coset representation of G by H.

Solution. Let S be the set of right cosets of H in G. That is, S = {H,Hb,Hb2, · · · , Hbn−1}.
From the mapping τg : S → S defined as (Ha)g = H(ag), we can rewrite it as in the cycle-
form if we represent S by {1, 2, · · · , n} in the following way:(

1 2 · · · n
H Hb · · · Hbn−1

)
.

Therefore, we have the following:

τe = id,

τb = (1, 2, · · · , n),

τb2 = (1, 2, · · · , n)2,

...

τbn−1 = (n, n− 1, · · · , 2, 1).

For τabi , the coset representation differs with the parity of n. If n is odd,

τa = (2, n)(3, n− 1) · · · ((n− 1)/2, (n+ 1)/2),

τab = τaτb = [(2, n)(3, n− 1) · · · ((n− 1)/2, (n+ 1)/2)] · (1, 2, · · · , n),

τab2 = τaτ
2
b = [(2, n)(3, n− 1) · · · ((n− 1)/2, (n+ 1)/2)] · (1, 2, · · ·n)2,

...

τabn−1 = (2, n)(3, n− 1) · · · ((n− 1)/2, (n+ 1)/2) · (n, n− 1, · · · , 2, 1).
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If n is even,

τa = (2, n)(3, n− 1) · · · (n/2− 1, n/2 + 1),

τab = τaτb = [(2, n)(3, n− 1) · · · (n/2− 1, n/2 + 1)] · (1, 2, · · · , n),

τab2 = τaτ
2
b = [(2, n)(3, n− 1) · · · (n/2− 1, n/2 + 1)] · (1, 2, · · · , n)2,

...

τabn−1 = [(2, n)(3, n− 1) · · · (n/2− 1, n/2 + 1)] · (n, n− 1, · · · , 2, 1).

Hence we have established the coset representation of the dihedral group D2n.

29. Let G be the group of Problem 21 and let H = {e, θ}. Find the coset representation
of G by H.

Solution. Let S be the set of right cosets of H in G. That is, S = {H,Ha,Hb,Hc}. From
the mapping τg : S → S defined as (Hx)g = H(xg), we can rewrite it as in the cycle-form
if we represent S by {1, 2, 3, 4} in the following way:(

1 2 3 4
H Ha Hb Hc

)
.

Therefore, we have the following:

τe = τθ = id,

τa = τθa = (1, 2)(3, 4),

τb = τθb = (1, 3)(2, 4),

τc − τθc = (1, 4)(2, 3).

Thus, the coset representation of G is given by: {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

30. Let G be Sn, the symmetric group of order n, acting as permutations on the set
{1, 2, · · · , n}. Let H = {σ ∈ G : nσ = n}.
a) Prove that H is isomorphic to Sn−1.

Proof. Note that every elements in H is a permutation that fixes n. Hence, we can regard
σ ∈ H as the permutation of the set {1, 2, · · · , n − 1}. Moreover, every elements in
Sn−1, when regarded as an element in Sn, fixes n trivially. H being a subgroup of Sn,
H ' Sn−1.

b) Find a set of elements a1, · · · , an ∈ G such that Ha1, · · · , Han give all the right cosets
of H in G.
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Solution. Let σ = (1, 2, · · · , n) ∈ Sn. Note that if Hσi = Hσj , 0 ≤ i < j ≤ n implies
σj−i ∈ H. But σk does not fix n for any k 6≡ 0 (mod n) but i = j. Therefore, S =
{H,Hσ,Hσ2, · · · , Hσn−1} is the set of right cosets of H in G.

c) Find the coset representation of G by H.

Solution. Let S be the set of right cosets of H in G. From the mapping τg : S → S defined
as (Hx)g = H(xg), we can rewrite it as in the cycle-form if we represent S by {1, 2, · · · , n}
in the following way: (

1 2 · · · n
H Hσ · · · Hσn−1

)
.

Therefore, we have the following: For any µ ∈ H ' Sn−1,

τµ = id,

τµσ = (1, 2, · · · , n),

τµσ2 = (1, 2, · · · , n)2,

...

τµσn−1 = (n, n− 1, · · · , 2, 1).

Therefore, the coset representation of G by H is given by: ((1, 2, · · · , n)).
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