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Problems in Section 3.5.

1. Let R be a ring with unit element, R not necessarily commutative, such that the only
right-ideals of R are (0) and R. Prove that R is a division ring.

Proof. If R = (0), then there is nothing to prove. So we assume that R 6= (0). Choose
a 6= 0 ∈ R. Then aR is a nontrivial right ideal of R so that aR = R. Since R has the unit
element 1, there is b ∈ R such that ab = 1. Hence, R is a division ring.

2. Let R be a ring such that the only right ideals of R are (0) and R. Prove that either R
is a division ring or that R is a ring with a prime number of elements in which ab = 0 for
every a, b,∈ R.

Proof. If R = (0), there is nothing to prove. Assume that R 6= (0). Now consider the
following subset U of R

U = {x ∈ R : ax = 0 for all a ∈ R}

Note that U is a right-ideal of R. Hence, it it either U = (0) or U = R. Suppose U = R.
Then ab = 0 for all a, b ∈ R. Suppose V is an addtive subgroup of R. Since product of
any elements of R is 0 and 0 ∈ V , V is also a (right) ideal of R. That is, R admits no
nontrivial proper subgroup. Hence, R must be of an additive subgroup of prime order.
Now we assume that U = (0). Then, for each a 6= 0 ∈ R, there is r ∈ R such that ar 6= 0.
We will establish the existence of (right) multiplcative identity and inverse in R. Now
consider the right ideal aR. Then aR 6= (0) so that aR = R. Now for some u ∈ R, au = a.
We claim that u is the required multiplicative identity(unit element). Note that if xy = 0,
x = 0 or y = 0 in R otherwise if x, y 6= 0, since xR = R, yR = R, 0 = (xy)R = x(yR) =
xR = R which not the case. Now from au = a, auu = au ⇐⇒ a(u2 − u) = 0 so that
u2 = u. Now take any b ∈ R. Then bu = bu2 ⇐⇒ (b− bu)u = 0 so that b = bu as u 6= 0.
Thus, u is the right identity of R. Now from aR = R for each a 6= 0, ak = u for some
k ∈ R. Hence, k plays the role of right inverse. Therefore, R is now a division ring.
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3. Let J be the ring of integers, p a prime number, and (p) the ideal of J consisting of all
multiples of p. Prove
a) J/(p) is isomorphic to Jp, the ring of integers mod p.

Proof. Define a mapping φ : Jp → J/(p) by φ(a) = a+(p). This is clearly a homomorphism
and also onto. The kernel of φ consists of elements a such that a ∈ (p) where a = 0 in Jp.
Hence, φ has trivial kernel and so that φ gives onto isomorphism between Jp and J/(p).

b) Using Theorem 3.5.1. and part (a) of this problem, that Jp is a field.

Proof. Note that (p) is a maximal ideal in J if and only if p is prime. Hence, J/(p) is a
field and since J/(p) ' Jp, Jp is a field.

4. Let R be the ring of all real-valued continuous functions on the closed unit interval. If
M is a maximal ideal of R, prove that there exists a real number γ, 0 ≤ γ ≤ 1, such that
M = Mγ = {f(x) ∈ R : f(γ) = 0}.

Proof. Note that [0, 1] is compact in R. We assume that M 6= (0) as an ideal of R. Further
that M (Mγ for all γ ∈ [0, 1]. Consequently,

[0, 1] ⊂
⋃
f∈M

f−1 (R− {0})

so that
⋃
f∈M f−1 (R− {0}) is an open covering of [0, 1]. Hence, it has a finite subcover

that

[0, 1] ⊂
n⋃
i=1

f−1i (R− {0}) ,

such that fi(xi) 6= 0 for each xi ∈ [0, 1]. Now define a function g : [0, 1]→ R by

g(x) =

n∑
i=1

f2i (x).

Then g(x) > 0 for all x ∈ [0, 1] and g ∈M . Note that 1/g ∈ R, so that 1 = 1/g ·g ∈M and
hence M = R. But since Mγ 6= R, it is must that M ⊂ Mγ for some γ ∈ [0, 1]. Suppose
M was maximal, Mγ = M . Hence proved.
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