Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 16, 2020

Problems in Section 3.5.

1. Let R be a ring with unit element, R not necessarily commutative, such that the only right-ideals of R are (0) and R. Prove that R is a division ring.

Proof. If R = (0), then there is nothing to prove. So we assume that $R \neq (0)$. Choose $a \neq 0 \in R$. Then aR is a nontrivial right ideal of R so that aR = R. Since R has the unit element 1, there is $b \in R$ such that ab = 1. Hence, R is a division ring.

2. Let R be a ring such that the only right ideals of R are (0) and R. Prove that either R is a division ring or that R is a ring with a prime number of elements in which ab = 0 for every $a, b, \in R$.

Proof. If R = (0), there is nothing to prove. Assume that $R \neq (0)$. Now consider the following subset U of R

$$U = \{x \in R : ax = 0 \text{ for all } a \in R\}$$

Note that U is a right-ideal of R. Hence, it it either U = (0) or U = R. Suppose U = R. Then ab = 0 for all $a, b \in R$. Suppose V is an additive subgroup of R. Since product of any elements of R is 0 and $0 \in V$, V is also a (right) ideal of R. That is, R admits no nontrivial proper subgroup. Hence, R must be of an additive subgroup of prime order.

Now we assume that U = (0). Then, for each $a \neq 0 \in R$, there is $r \in R$ such that $ar \neq 0$. We will establish the existence of (right) multiplcative identity and inverse in R. Now consider the right ideal aR. Then $aR \neq (0)$ so that aR = R. Now for some $u \in R$, au = a. We claim that u is the required multiplicative identity(unit element). Note that if xy = 0, x = 0 or y = 0 in R otherwise if $x, y \neq 0$, since xR = R, yR = R, 0 = (xy)R = x(yR) =xR = R which not the case. Now from au = a, $auu = au \iff a(u^2 - u) = 0$ so that $u^2 = u$. Now take any $b \in R$. Then $bu = bu^2 \iff (b - bu)u = 0$ so that b = bu as $u \neq 0$. Thus, u is the right identity of R. Now from aR = R for each $a \neq 0$, ak = u for some $k \in R$. Hence, k plays the role of right inverse. Therefore, R is now a division ring. \Box 3. Let J be the ring of integers, p a prime number, and (p) the ideal of J consisting of all multiples of p. Prove

a) J/(p) is isomorphic to J_p , the ring of integers mod p.

Proof. Define a mapping $\phi: J_p \to J/(p)$ by $\phi(a) = a + (p)$. This is clearly a homomorphism and also onto. The kernel of ϕ consists of elements a such that $a \in (p)$ where a = 0 in J_p . Hence, ϕ has trivial kernel and so that ϕ gives onto isomorphism between J_p and J/(p). \Box

b) Using Theorem 3.5.1. and part (a) of this problem, that J_p is a field.

Proof. Note that (p) is a maximal ideal in J if and only if p is prime. Hence, J/(p) is a field and since $J/(p) \simeq J_p$, J_p is a field.

4. Let R be the ring of all real-valued continuous functions on the closed unit interval. If M is a maximal ideal of R, prove that there exists a real number γ , $0 \le \gamma \le 1$, such that $M = M_{\gamma} = \{f(x) \in R : f(\gamma) = 0\}.$

Proof. Note that [0, 1] is compact in \mathbb{R} . We assume that $M \neq (0)$ as an ideal of R. Further that $M \subsetneq M_{\gamma}$ for all $\gamma \in [0, 1]$. Consequently,

$$[0,1] \subset \bigcup_{f \in M} f^{-1} \left(\mathbb{R} - \{0\} \right)$$

so that $\bigcup_{f \in M} f^{-1}(\mathbb{R} - \{0\})$ is an open covering of [0, 1]. Hence, it has a finite subcover that

$$[0,1] \subset \bigcup_{i=1}^{n} f_i^{-1} \left(\mathbb{R} - \{0\} \right),$$

such that $f_i(x_i) \neq 0$ for each $x_i \in [0, 1]$. Now define a function $g: [0, 1] \to \mathbb{R}$ by

$$g(x) = \sum_{i=1}^{n} f_i^2(x).$$

Then g(x) > 0 for all $x \in [0, 1]$ and $g \in M$. Note that $1/g \in R$, so that $1 = 1/g \cdot g \in M$ and hence M = R. But since $M_{\gamma} \neq R$, it is must that $M \subset M_{\gamma}$ for some $\gamma \in [0, 1]$. Suppose M was maximal, $M_{\gamma} = M$. Hence proved.