Topics in Algebra solution

Sung Jong Lee, lovekrand.github.io

November 16, 2020

Problems in Section 3.3 - 3.4.

1. If U is an ideal of R and $1 \in U$, prove that U = R.

Proof. Choose $r \in R$. Since $1 \in U$ and U is an ideal, $r \cdot 1 = r \in U$. This shows that U = R.

2. If F is a field, prove its only ideals are (0) and F itself.

Proof. Let U be an ideal. If U = (0), there is nothing to prove. If $U \neq (0)$, as $U \subset F$, for any $u \neq 0 \in U$, there exists its multiplicative inverse so that $u^{-1} \cdot u = 1 \in U$. Now by Problem 1, U = R.

3. Prove that any homomorphism of a field is either an isomorphism or takes each element into 0.

Proof. Let $\phi: F \to F'$ be a homomorphism where F and F' are fields. Note that

$$\phi(1) = \phi(1 \cdot 1) = \phi(1) \cdot \phi(1)$$

so that either $\phi(1) = 1$ or $\phi(1) = 0$. If former was the case, then $\phi(x) = 0$ if and only if x = 0 so that ϕ is an isomorphism. If later was the case, then ϕ is a zero-map.

4. If R is a commutative ring and a ∈ R,
a) Show that aR = {ar : r ∈ R} is a two-sided ideal of R.

Proof. We first show that aR is a subgroup of R under addition operation. Choose $ar_1, ar_2 \in aR$. Then $ar_1 + ar_2 = a(r_1 + r_2) \in aR$ so that aR is closed under addition. We have the additive identity $0 = a \cdot 0 \in aR$, and the additive inverse $a(-r) \in aR$ for each $ar \in aR$. Hence, aR is a subgroup of R under addition.

Now we show that aR swallows up the multiplication from left and right by arbitrary ring elements. Choose $r \in R$. Since R is commutative, for any $u = ar' \in aR$, $ru = r(ar') = (ra)r' = (ar)r' = a(rr') \in aR$. Also, $ur = (ar')r = a(r'r) \in aR$. Therefore, aR is now a two-sided ideal of R.

b) Show by an example that this may be false if R is not commutative.

Proof. Suppose we take R to be the ring of all rational matrices of size 2×2 . Set $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then

$$aR = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}.$$

But for $r = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$,

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ a & b \end{pmatrix} \notin aR$$

so that aR is not necessarily a two sided ideal if R is not commutative.

5. If U and V are ideals of R, let $U + V = \{u + v \mid u \in U, v \in V\}$. Prove that U + V is also an ideal.

Proof. Just merely observing U and V as subgroups of abelian group R under addition, U+V is also a subgroup of R under addition. Now, we choose $r \in R$. Then, for any $u \in U$, $v \in V$, $r(u+v) = ru + rv \in U + V$ since $ru \in U$ and $rv \in V$ as U and V are ideals of R. So, $(u+v)r \in U + V$ holds similarly. Thus, U+V is an ideal in R.

6. If U, V are ideals of R let UV be the set of all elements that can be written as finite sums of elements of the form uv whre $u \in U$ and $v \in V$. Prove that UV is an ideal of R.

Proof. It is possible to express UV as

$$UV = \left\{ \sum_{i=1}^{n} u_i v_i \; \middle| \; u_i \in U, v_i \in V, n \in \mathbb{Z}^+ \right\}.$$

Note that $\sum_{i}^{n} u_{i}v_{i} + \sum_{j}^{m} u_{j}v_{j} = \sum_{k}^{n+m} u_{k}v_{k} \in UV$ so that UV is closed under addition. Also, it clearly contains the additive identity 0, and the additive inverse $-\sum_{i}^{n} u_{i}v_{i} = \sum_{i}^{n} (-u_{i})v_{i}$ for each $\sum_{i}^{n} u_{i}v_{i}$ in UV. Thus, UV is a subgroup of R under addition. Now choose $r \in R$. Consequently,

$$r \cdot \sum_{i=1}^{n} u_i v_i = \sum_{i=1}^{n} (ru_i) v_i = \sum_{i=1}^{n} (u'_i) v_i \in UV$$

with some $u'_i \in U$ for each $i = 1, 2, \dots, n$. Similar argument holds for the right multiplication of r, so that UV is an ideal of R.

7. In Problem 6 prove that $UV \subset U \cap V$.

Proof. Note that since U and V are ideals,

$$\sum_{i=1}^{n} u_i v_i = \sum_{i=1}^{n} (u'_i) \in U, \quad \sum_{i=1}^{n} u_i v_i = \sum_{i=1}^{n} (v'_i) \in V$$

for some $u'_i \in U$ and $v_i \in V$. Hence, $UV \subset U \cap V$.

8. If R is the ring of integers, let U be the ideal consisting of all multiples of 17. Prove that if V is an ideal of R and $R \supset V \supset U$ then either V = R or V = U. Generalize!

Proof. Note that every subgroup of cyclic group is cyclic, hence, $V \supset U$ must be a form of (m) where m > 0 is an integer, dividing 17. Thus, either m = 1 or m = 17. That is, equivalently, V = R or V = U. This argument holds even if we change 17 into any prime number.

9. If U is an ideal of R, let $r(U) = \{x \in R : xu = 0 \text{ for all } u \in U\}$. Prove that r(U) is an ideal of R.

Proof. Choose $x, y \in r(U)$. Then (x+y)u = xu + yu = 0 + 0 = 0 for all $u \in U$ so that r(U) is closed under addition. Clearly, $0 \in r(U)$. Also, (-x)u = -(xu) = 0 so that $-x \in r(U)$ for each $x \in r(U)$. Thus, r(U) is a subgroup of R under addition. Now choose $r' \in R$. Then (r'x)u = r'(xu) = 0 so that $r'x \in r(U)$ and (xr')u = x(r'u) = xu' = 0 for some $u' \in U$ so that $xr' \in r(U)$. Therefore, r(U) is an ideal of R.

10. If U is an ideal of R let $[R:U] = \{x \in R : rx \in U \text{ for every } r \in R\}$. Prove that [R:U] is an ideal of R and that it contains U.

Proof. Choose $x, y \in [R : U]$. Then $r(x + y) = rx + ry \in U$ for all $r \in R$ so that [R : U] is closed under addition. Clearly, $0 \in [R : U]$. Also, $r(-x) = -(rx) \in U$ so that $-x \in [R : U]$. Hence, [R : U] is a subgroup of R under addition.

Now choose $r' \in R$. Then $r(r'x) = (rr')x \in U$ so that $r'x \in [R : U]$. Also, $r(xr') = (rx)r' \in U$ since $rx \in U$ and U is an ideal. Therefore, we conclude that [R : U] is an ideal of R.

11. Let R be a ring with unit element. Using its elements we define a ring \hat{R} by defining $a \oplus b = a + b + 1$, and $a \cdot b = ab + a + b$, where $a, b \in R$ and where the addition and multiplication on the right-hand side of these relations are those of R.

a) Prove that \hat{R} is a ring under the operations \oplus and \cdot .

Proof. (Closedness of \oplus) For all $a, b \in R$, $a \oplus b = a + b + 1 \in R$. (Associativity) For all $a, b, c \in R$,

$$a \oplus (b \oplus c) = a \oplus (b + c + 1) = a + (b + c + 1) + 1 = (a + b + 1) + c + 1 = (a \oplus b) \oplus c$$

(Commutativity) For all $a, b \in R$, $a \oplus b = a + b + 1 = b + a + 1 = b \oplus a$. (Additive identity) For all $a \in R$, $a \oplus -1 = a = -1 \oplus a$. (Additive inverse) For all $a \neq -1 \in R$, $a \oplus (-a - 2) = -1 = (-a - 2) \oplus a$. (Closedness of \cdot) For all $a, b \in R$, $a \cdot b = ab + a + b \in R$. (Associativity) For all $a, b, c \in R$,

$$a \cdot (b \cdot c) = a \cdot (bc + b + c) = a(bc + b + c) + a + (bc + b + c)$$

= $abc + ac + bc + ab + a + b + c$
= $(ab + a + b)c + (ab + a + b) + c = (a \cdot b) \cdot c.$

(Distributive properties) For all $a, b, c \in R$,

$$a \cdot (b \oplus c) = a \cdot (b + c + 1)$$

= $a(b + c + 1) + a + (b + c + 1)$
= $ab + ac + 2a + b + c + 1$,

where

$$(a \cdot b) \oplus (a \cdot c) = (ab + a + b) \oplus (ac + a + c)$$
$$= (ab + a + b) + (ac + a + c) + 1$$
$$= ab + ac + 2a + b + c + 1$$

so that $a \cdot (b \oplus c) = (a \cdot b) \oplus (a \cdot c)$. Further,

$$(a \oplus b) \cdot c = (a + b + 1) \cdot c$$

= $(a + b + 1)c + (a + b + 1) + c$
= $ac + bc + 2c + a + b + 1$,

where

$$(a \cdot c) \oplus (b \cdot c) = (ac + a + c) \oplus (bc + b + c)$$
$$= (ac + a + c) + (bc + b + c) + 1$$
$$= ac + bc + 2c + a + b + 1$$

so that $(a \oplus b) \cdot c = (a \cdot c) \oplus (b \cdot c)$. Therefore, \tilde{R} is a ring.

b) What act as the zero-element of \tilde{R} ?

Solution. -1 is clearly the zero-element.

c) What act as the unit-element of R?

Solution. Note that for all $a \neq -1 \in \tilde{R}$,

$$a \cdot u = a \iff au + a + u = a \iff u = 0.$$

Thus, 0 is the unit-element of \hat{R} .

d) Prove that R is isomorphic to R.

Proof. Define a mapping $\phi: R \to \tilde{R}$ by $\phi(a) = a - 1$. Then it is a homomorphism since

$$\phi(a+b) = (a+b) - 1 = (a-1) + (b-1) + 1 = \phi(a) \oplus \phi(b),$$

$$\phi(ab) = ab - 1 = (a-1)(b-1) + (a-1) + (b-1) = \phi(a) \cdot \phi(b).$$

Clearly ϕ is surjective. Also, $\phi(a) = -1 \iff a = 0$, so that the kernel of ϕ is trivial. Hence, ϕ induces an onto isomorphism between R and \tilde{R} .

12. In Example 3.1.6 we discussed the ring of rational 2×2 matrices. Prove that this ring has no ideals other than (0) and the ring itself.

Proof. Let U be a proper nontrivial ideal of R. If U = (0), there is nothing to prove. Suppose U has a nonzero 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If $\det(A) \neq 0$, it has the inverse $A^{-1} \in R$ so that $A^{-1}A = I \in U$, so that U = R. If $\det(A) = 0$, for if $a \neq 0$,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1/a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in U,$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in U,$$
$$\implies \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in U.$$

Hence U = R. If a = 0, since ad = bc, then b = 0 or c = 0. If both b = c = 0 and d = 0, then U = (0). If b = c = 0 and $d \neq 0$,

$$\begin{pmatrix} 0 & 1/d \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in U,$$
$$\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1/d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in U,$$
$$\Longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in U,$$

so that U = R. Now we assume that, WLOG, b = 0 and $c \neq 0$. Additionally we can assume that $d \neq 0$, since d = 0 is intrinsically the same case with above. So, we consider a = b = 0 and $c, d \neq 0$. Observe that

$$\begin{pmatrix} 0 & 1/c \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in U,$$
$$\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/c \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in U,$$
$$\implies \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in U,$$

so that U = R. Hence we see that U = (0) or either U = R.

13. In Example 3.1.8 we discussed the real quaternions. Using this as a model we define the quaternions over the integers mod p, p an odd prime number, in exactly the same way; however, now considering all symbols of the form $\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k$, where α_i are integers mod p.

a) Prove that this is a ring with p^4 elements whose only ideals are (0) and the ring itself.

Proof. There are p^4 different elements possible in R, and R is clearly a ring with the operations inherited from the quaternion ring over real. Now suppose U is an ideal of R. If U = (0), there is nothing to prove. If $U \neq (0)$, there is a $a + bi + cj + dk \in I$ and WLOG, $a \neq 0$. Observe that:

$$\begin{split} i(a+bi+cj+dk)i &= -a-bi+cj+dk\\ \implies (a+bi+cj+dk) - (-a-bi+cj+dk) = 2a+2bi \implies a+bi \in I,\\ j(a+bi)j &= -a+bi \implies (a+bi) - (a-bi) = 2a \implies 1 \in I, \end{split}$$

so that I = R.

b) Prove that this ring is not a division ring.

Proof. Note that

$$qq' = (a + bi + cj + dk)(a - bi - cj - dk) = a^{2} + b^{2} + c^{2} + d^{2}$$

for $a, b, c, d \in Z_p$. In general, a, b, c, d need not be all 0 to satisfy $a^2 + b^2 + c^2 + d^2 = 0$. Hence this admits a zero divisor in R. Therefore, R is not a division ring. We can also make use of Wedderburn's Theorem, which states that every finite division ring must be commutative.

14. For $a \in R$ let $Ra = \{xa : a \in R\}$. Prove that Ra is a left-ideal of R.

Proof. Ra is clearly a subgroup of R under addition. Choose $r \in R$. Then $r(xa) = (rx)a \in Ra$ so that Ra is a left ideal of R.

15. Prove that the intersection of two left-ideals of R is a left-ideal of R.

Proof. Let U and V be the left-ideals of R. We know that intersection of two subgroup is again a subgroup. Now choose $r \in R$. Then for $w \in U \cap V$, $rw \in U, V$ so that $uw \in U \cap V$. Hence, $U \cap V$ is a left-ideal of R.

16. What can you say about the intersection of a left-ideal and right-ideal of R?

Solution. Intersection of a left-ideal and right-ideal need not be a left-ideal of right-ideal. For instance, suppose R is the ring of 2×2 rational matrices. Consider the ideals

$$U_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}$$

and

$$U_2 = R \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \middle| a, c \in \mathbb{Q} \right\}$$

so that the intersection is given by

$$U_1 \cap U_2 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{Q} \right\}.$$

But this is neither a left ideal nor a right ideal, since

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \notin U, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \notin U.$$

17. If R is a ring and $a \in R$ let $r(a) = \{x \in R : ax = 0\}$. Prove that r(a) is a right-ideal of R.

Proof. Choose $x, y \in r(a)$. Then a(x + y) = ax + ay = 0 so that r(a) is closed under addition. Also, $0 \in r(a)$. Further, a(-x) = -(ax) = 0 for all $x \neq 0$ so that $-x \in r(a)$. Therefore, r(a) is a subgroup of R under addition.

Now choose $r' \in R$. Then a(xr) = (ax)r = 0 so that $xr \in r(a)$. Hence, r(a) is now a right-ideal of R.

18. If R is a ring and L is a left-ideal of R let $\lambda(L) = \{x \in R : xa = 0 \text{ for all } a \in L\}$. Prove that $\lambda(L)$ is a two-sided ideal of R.

Proof. Choose $x, y \in \lambda(L)$. Then (x + y)a = xa + ya = 0 for all $a \in L$ so that $\lambda(L)$ is closed under addition. Also, $0 \in \lambda(L)$. Further, (-x)a = -(xa) = 0 so that $-x \in \lambda(L)$ for all $x \in \lambda(L)$. Hence $\lambda(L)$ is a subgroup of R under addition.

Now choose $r' \in R$. Then (r'x)a = r'(xa) = 0 so that $r'x \in \lambda(L)$. Also, (xr')a = x(r'a) = x(a') = 0 where $a' \in L$, so that $xr' \in \lambda(L)$. Therefore, $\lambda(L)$ is a two-sided ideal of R. \Box

19. Let R be a ring in which $x^3 = x$ for every $x \in R$. Prove that R is a commutative ring. *Proof.* First note that $(2x)^3 = 2x \implies 6x = 0$ for all $x \in R$. Computing $(x + y)^3$ and $(x - y)^3$,

$$(x+y)^3 = x+y \implies x^2y + xyx + xy^2 + yx^2 + yxy + y^2x = 0, (x-y)^3 = x-y \implies x^2y + xyx - xy^2 + yx^2 - yxy - y^2x = 0.$$

so that on adding, $2x^2y + 2xyx + 2yx^2 = 0$. Multiplying x on left and right, we obtain

$$2xy + 2x^2yx + 2xyx^2 = 0, \quad 2x^2yx + 2xyx^2 + 2yx = 0$$

so that 2(xy - yx) = 0. Now we calculate $(x + x^2)^3$. Consequently,

$$(x + x^2)^3 = 4(x + x^2) = x + x^2 \implies 3(x + x^2) = 0.$$

Moreover,

$$3(x + y + (x + y)^2) = 3(x + x^2) + 3(y + y^2) + 3(xy + yx) = 3(xy + yx) = 0.$$

Since 6xy = 0, 3(xy - yx) = 0. Now from 2(xy - yx) = 0, we have xy - yx = 0 and hence R is commutative.

20. If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R' prove that $\phi(1)$ is the unit element of R'.

Proof. Since ϕ is onto, for any $a \in R'$ there is $x \in R$ so that $a = \phi(x)$. Consequently, $a = \phi(x) = \phi(x \cdot 1) = \phi(x)\phi(1) = a\phi(1)$ and $a = \phi(x) = \phi(1 \cdot x) = \phi(1)\phi(x) = \phi(1)a$, so that $\phi(1)$ is the unit element of R'.

21. If R is a ring with unit element 1 and ϕ is a homomorphism of R into an integral domain R' such that $I(\phi) \neq R$, prove that $\phi(1)$ is the unit element of R'.

Proof. Note that $\phi(1) = \phi(1 \cdot 1) = \phi(1)^2$ so that either $\phi(1) = 0$ or $\phi(1) = 1$. If former was the case, $I(\phi) = R$. Hence, $\phi(1) = 1$ is the only possible case.