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Problems in Section 3.3 - 3.4.

1. If U is an ideal of R and 1 ∈ U , prove that U = R.

Proof. Choose r ∈ R. Since 1 ∈ U and U is an ideal, r · 1 = r ∈ U . This shows that
U = R.

2. If F is a field, prove its only ideals are (0) and F itself.

Proof. Let U be an ideal. If U = (0), there is nothing to prove. If U 6= (0), as U ⊂ F ,
for any u 6= 0 ∈ U , there exists its multiplicative inverse so that u−1 · u = 1 ∈ U . Now by
Problem 1, U = R.

3. Prove that any homomorphism of a field is either an isomorphism or takes each element
into 0.

Proof. Let φ : F → F ′ be a homomorphism where F and F ′ are fields. Note that

φ(1) = φ(1 · 1) = φ(1) · φ(1)

so that either φ(1) = 1 or φ(1) = 0. If former was the case, then φ(x) = 0 if and only if
x = 0 so that φ is an isomorphism. If later was the case, then φ is a zero-map.

4. If R is a commutative ring and a ∈ R,
a) Show that aR = {ar : r ∈ R} is a two-sided ideal of R.

Proof. We first show that aR is a subgroup of R under addition operation. Choose
ar1, ar2 ∈ aR. Then ar1 + ar2 = a(r1 + r2) ∈ aR so that aR is closed under addi-
tion. We have the additive identity 0 = a · 0 ∈ aR, and the additive inverse a(−r) ∈ aR
for each ar ∈ aR. Hence, aR is a subgroup of R under addition.
Now we show that aR swallows up the multiplication from left and right by arbitrary ring
elements. Choose r ∈ R. Since R is commutative, for any u = ar′ ∈ aR, ru = r(ar′) =
(ra)r′ = (ar)r′ = a(rr′) ∈ aR. Also, ur = (ar′)r = a(r′r) ∈ aR. Therefore, aR is now a
two-sided ideal of R.

1



b) Show by an example that this may be false if R is not commutative.

Proof. Suppose we take R to be the ring of all rational matrices of size 2 × 2. Set a =(
1 0
0 0

)
. Then

aR =

{(
a b
0 0

) ∣∣∣∣ a, b ∈ Q
}
.

But for r =

(
0 0
1 1

)
,

(
0 0
1 1

)(
a b
0 0

)
=

(
0 0
a b

)
6∈ aR

so that aR is not necessarily a two sided ideal if R is not commutative.

5. If U and V are ideals of R, let U + V = {u + v | u ∈ U, v ∈ V }. Prove that U + V is
also an ideal.

Proof. Just merely observing U and V as subgroups of abelian group R under addition,
U+V is also a subgroup of R under addition. Now, we choose r ∈ R. Then, for any u ∈ U ,
v ∈ V , r(u+ v) = ru+ rv ∈ U + V since ru ∈ U and rv ∈ V as U and V are ideals of R.
So, (u+ v)r ∈ U + V holds similarly. Thus, U + V is an ideal in R.

6. If U, V are ideals of R let UV be the set of all elements that can be written as finite
sums of elements of the form uv whre u ∈ U and v ∈ V . Prove that UV is an ideal of R.

Proof. It is possible to express UV as

UV =

{
n∑

i=1

uivi

∣∣∣∣∣ ui ∈ U, vi ∈ V, n ∈ Z+

}
.

Note that
∑n

i uivi +
∑m

j ujvj =
∑n+m

k ukvk ∈ UV so that UV is closed under addition.
Also, it clearly contains the additive identity 0, and the additive inverse −

∑n
i uivi =∑n

i (−ui)vi for each
∑n

i uivi in UV . Thus, UV is a subgroup of R under addition. Now
choose r ∈ R. Consequently,

r ·
n∑

i=1

uivi =
n∑

i=1

(rui)vi =
n∑

i=1

(u′i)vi ∈ UV

with some u′i ∈ U for each i = 1, 2, · · · , n. Similar argument holds for the right multiplica-
tion of r, so that UV is an ideal of R.
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7. In Problem 6 prove that UV ⊂ U ∩ V .

Proof. Note that since U and V are ideals,

n∑
i=1

uivi =

n∑
i=1

(u′i) ∈ U,
n∑

i=1

uivi =

n∑
i=1

(v′i) ∈ V

for some u′i ∈ U and vi ∈ V . Hence, UV ⊂ U ∩ V .

8. If R is the ring of integers, let U be the ideal consisting of all multiples of 17. Prove
that if V is an ideal of R and R ⊃ V ⊃ U then either V = R or V = U . Generalize!

Proof. Note that every subgroup of cyclic group is cyclic, hence, V ⊃ U must be a form
of (m) where m > 0 is an integer, dividing 17. Thus, either m = 1 or m = 17. That is,
equivalently, V = R or V = U . This argument holds even if we change 17 into any prime
number.

9. If U is an ideal of R, let r(U) = {x ∈ R : xu = 0 for all u ∈ U}. Prove that r(U) is an
ideal of R.

Proof. Choose x, y ∈ r(U). Then (x+y)u = xu+yu = 0+0 = 0 for all u ∈ U so that r(U)
is closed under addition. Clearly, 0 ∈ r(U). Also, (−x)u = −(xu) = 0 so that −x ∈ r(U)
for each x ∈ r(U). Thus, r(U) is a subgroup of R under addition.
Now choose r′ ∈ R. Then (r′x)u = r′(xu) = 0 so that r′x ∈ r(U) and (xr′)u = x(r′u) =
xu′ = 0 for some u′ ∈ U so that xr′ ∈ r(U). Therefore, r(U) is an ideal of R.

10. If U is an ideal of R let [R : U ] = {x ∈ R : rx ∈ U for every r ∈ R}. Prove that [R : U ]
is an ideal of R and that it contains U .

Proof. Choose x, y ∈ [R : U ]. Then r(x+ y) = rx+ ry ∈ U for all r ∈ R so that [R : U ] is
closed under addition. Clearly, 0 ∈ [R : U ]. Also, r(−x) = −(rx) ∈ U so that −x ∈ [R : U ].
Hence, [R : U ] is a subgroup of R under addition.
Now choose r′ ∈ R. Then r(r′x) = (rr′)x ∈ U so that r′x ∈ [R : U ]. Also, r(xr′) =
(rx)r′ ∈ U since rx ∈ U and U is an ideal. Therefore, we conclude that [R : U ] is an ideal
of R.

11. Let R be a ring with unit element. Using its elements we define a ring R̃ by defining
a ⊕ b = a + b + 1, and a · b = ab + a + b, where a, b ∈ R and where the addition and
multiplication on the right-hand side of these relations are those of R.
a) Prove that R̃ is a ring under the operations ⊕ and ·.
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Proof. (Closedness of ⊕) For all a, b ∈ R, a⊕ b = a+ b+ 1 ∈ R.
(Associativity) For all a, b, c ∈ R,

a⊕ (b⊕ c) = a⊕ (b+ c+ 1) = a+ (b+ c+ 1) + 1 = (a+ b+ 1) + c+ 1 = (a⊕ b)⊕ c.

(Commutativity) For all a, b ∈ R, a⊕ b = a+ b+ 1 = b+ a+ 1 = b⊕ a.
(Additive identity) For all a ∈ R, a⊕−1 = a = −1⊕ a.
(Additive inverse) For all a 6= −1 ∈ R, a⊕ (−a− 2) = −1 = (−a− 2)⊕ a.
(Closedness of ·) For all a, b ∈ R, a · b = ab+ a+ b ∈ R.
(Associativity) For all a, b, c ∈ R,

a · (b · c) = a · (bc+ b+ c) = a(bc+ b+ c) + a+ (bc+ b+ c)

= abc+ ac+ bc+ ab+ a+ b+ c

= (ab+ a+ b)c+ (ab+ a+ b) + c = (a · b) · c.

(Distributive properties) For all a, b, c ∈ R,

a · (b⊕ c) = a · (b+ c+ 1)

= a(b+ c+ 1) + a+ (b+ c+ 1)

= ab+ ac+ 2a+ b+ c+ 1,

where

(a · b)⊕ (a · c) = (ab+ a+ b)⊕ (ac+ a+ c)

= (ab+ a+ b) + (ac+ a+ c) + 1

= ab+ ac+ 2a+ b+ c+ 1

so that a · (b⊕ c) = (a · b)⊕ (a · c). Further,

(a⊕ b) · c = (a+ b+ 1) · c
= (a+ b+ 1)c+ (a+ b+ 1) + c

= ac+ bc+ 2c+ a+ b+ 1,

where

(a · c)⊕ (b · c) = (ac+ a+ c)⊕ (bc+ b+ c)

= (ac+ a+ c) + (bc+ b+ c) + 1

= ac+ bc+ 2c+ a+ b+ 1

so that (a⊕ b) · c = (a · c)⊕ (b · c). Therefore, R̃ is a ring.

b) What act as the zero-element of R̃?
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Solution. −1 is clearly the zero-element.

c) What act as the unit-element of R̃?

Solution. Note that for all a 6= −1 ∈ R̃,

a · u = a ⇐⇒ au+ a+ u = a ⇐⇒ u = 0.

Thus, 0 is the unit-element of R̃.

d) Prove that R is isomorphic to R̃.

Proof. Define a mapping φ : R→ R̃ by φ(a) = a− 1. Then it is a homomorphism since

φ(a+ b) = (a+ b)− 1 = (a− 1) + (b− 1) + 1 = φ(a)⊕ φ(b),

φ(ab) = ab− 1 = (a− 1)(b− 1) + (a− 1) + (b− 1) = φ(a) · φ(b).

Clearly φ is surjective. Also, φ(a) = −1 ⇐⇒ a = 0, so that the kernel of φ is trivial.
Hence, φ induces an onto isomorphism between R and R̃.

12. In Example 3.1.6 we discussed the ring of rational 2× 2 matrices. Prove that this ring
has no ideals other than (0) and the ring itself.

Proof. Let U be a proper nontrivial ideal of R. If U = (0), there is nothing to prove.

Suppose U has a nonzero 2 matrix A =

(
a b
c d

)
. If det(A) 6= 0, it has the inverse A−1 ∈ R

so that A−1A = I ∈ U , so that U = R. If det(A) = 0, for if a 6= 0,(
1 0
0 0

)
·
(
a b
c d

)
·
(

1/a 0
0 0

)
=

(
1 0
0 0

)
∈ U,(

0 0
1 0

)
·
(
a b
c d

)
·
(

0 1/a
0 0

)
=

(
0 0
0 1

)
∈ U,

=⇒
(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
∈ U.

Hence U = R. If a = 0, since ad = bc, then b = 0 or c = 0. If both b = c = 0 and d = 0,
then U = (0). If b = c = 0 and d 6= 0,(

0 1/d
0 0

)
·
(

0 0
0 d

)
·
(

0 0
1 0

)
=

(
1 0
0 0

)
∈ U,(

0 0
0 d

)
·
(

0 0
0 1/d

)
=

(
0 0
0 1

)
∈ U,

=⇒
(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
∈ U,
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so that U = R. Now we assume that, WLOG, b = 0 and c 6= 0. Additionally we can
assume that d 6= 0, since d = 0 is intrinsically the same case with above. So, we consider
a = b = 0 and c, d 6= 0. Observe that(

0 1/c
0 0

)
·
(

0 0
c d

)
·
(

1 0
0 0

)
=

(
1 0
0 0

)
∈ U,(

0 0
c d

)
·
(

0 1/c
0 0

)
=

(
0 0
0 1

)
∈ U,

=⇒
(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
∈ U,

so that U = R. Hence we see that U = (0) or either U = R.

13. In Example 3.1.8 we discussed the real quaternions. Using this as a model we define
the quaternions over the integers mod p, p an odd prime number, in exactly the same
way; however, now considering all symbols of the form α0 + α1i+ α2j + α3k, where αi are
integers mod p.
a) Prove that this is a ring with p4 elements whose only ideals are (0) and the ring itself.

Proof. There are p4 different elements possible in R, and R is clearly a ring with the
operations inherited from the quaternion ring over real. Now suppose U is an ideal of R.
If U = (0), there is nothing to prove. If U 6= (0), there is a a+ bi+ cj+dk ∈ I and WLOG,
a 6= 0. Observe that:

i(a+ bi+ cj + dk)i = −a− bi+ cj + dk

=⇒ (a+ bi+ cj + dk)− (−a− bi+ cj + dk) = 2a+ 2bi =⇒ a+ bi ∈ I,
j(a+ bi)j = −a+ bi =⇒ (a+ bi)− (a− bi) = 2a =⇒ 1 ∈ I,

so that I = R.

b) Prove that this ring is not a division ring.

Proof. Note that

qq′ = (a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2

for a, b, c, d ∈ Zp. In general, a, b, c, d need not be all 0 to satisfy a2 + b2 + c2 + d2 = 0.
Hence this admits a zero divisor in R. Therefore, R is not a division ring. We can also
make use of Wedderburn’s Theorem, which states that every finite division ring must be
commutative.

14. For a ∈ R let Ra = {xa : a ∈ R}. Prove that Ra is a left-ideal of R.
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Proof. Ra is clearly a subgroup of R under addition. Choose r ∈ R. Then r(xa) = (rx)a ∈
Ra so that Ra is a left ideal of R.

15. Prove that the intersection of two left-ideals of R is a left-ideal of R.

Proof. Let U and V be the left-ideals of R. We know that intersection of two subgroup is
again a subgroup. Now choose r ∈ R. Then for w ∈ U ∩V , rw ∈ U, V so that uw ∈ U ∩V .
Hence, U ∩ V is a left-ideal of R.

16. What can you say about the intersection of a left-ideal and right-ideal of R?

Solution. Intersection of a left-ideal and right-ideal need not be a left-ideal of right-ideal.
For instance, suppose R is the ring of 2× 2 rational matrices. Consider the ideals

U1 =

(
1 0
0 0

)
R =

{(
a b
0 0

)∣∣∣∣a, b ∈ Q
}

and

U2 = R

(
1 0
0 0

)
=

{(
a 0
c 0

)∣∣∣∣a, c ∈ Q
}

so that the intersection is given by

U1 ∩ U2 =

{(
a 0
0 0

)∣∣∣∣a ∈ Q
}
.

But this is neither a left ideal nor a right ideal, since(
0 0
1 0

)
·
(

1 0
0 0

)
=

(
0 0
1 0

)
6∈ U,

(
1 0
0 0

)
·
(

0 1
0 0

)
=

(
0 1
0 0

)
6∈ U.

17. If R is a ring and a ∈ R let r(a) = {x ∈ R : ax = 0}. Prove that r(a) is a right-ideal
of R.

Proof. Choose x, y ∈ r(a). Then a(x + y) = ax + ay = 0 so that r(a) is closed under
addition. Also, 0 ∈ r(a). Further, a(−x) = −(ax) = 0 for all x 6= 0 so that −x ∈ r(a).
Therefore, r(a) is a subgroup of R under addition.
Now choose r′ ∈ R. Then a(xr) = (ax)r = 0 so that xr ∈ r(a). Hence, r(a) is now a
right-ideal of R.

18. If R is a ring and L is a left-ideal of R let λ(L) = {x ∈ R : xa = 0 for all a ∈ L}. Prove
that λ(L) is a two-sided ideal of R.
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Proof. Choose x, y ∈ λ(L). Then (x + y)a = xa + ya = 0 for all a ∈ L so that λ(L) is
closed under addition. Also, 0 ∈ λ(L). Further, (−x)a = −(xa) = 0 so that −x ∈ λ(L) for
all x ∈ λ(L). Hence λ(L) is a subgroup of R under addition.
Now choose r′ ∈ R. Then (r′x)a = r′(xa) = 0 so that r′x ∈ λ(L). Also, (xr′)a = x(r′a) =
x(a′) = 0 where a′ ∈ L, so that xr′ ∈ λ(L). Therefore, λ(L) is a two-sided ideal of R.

19. Let R be a ring in which x3 = x for every x ∈ R. Prove that R is a commutative ring.

Proof. First note that (2x)3 = 2x =⇒ 6x = 0 for all x ∈ R. Computing (x + y)3 and
(x− y)3,

(x+ y)3 = x+ y =⇒ x2y + xyx+ xy2 + yx2 + yxy + y2x = 0,

(x− y)3 = x− y =⇒ x2y + xyx− xy2 + yx2 − yxy − y2x = 0.

so that on adding, 2x2y + 2xyx+ 2yx2 = 0. Multiplying x on left and right, we obtain

2xy + 2x2yx+ 2xyx2 = 0, 2x2yx+ 2xyx2 + 2yx = 0

so that 2(xy − yx) = 0. Now we calculate (x+ x2)3. Consequently,

(x+ x2)3 = 4(x+ x2) = x+ x2 =⇒ 3(x+ x2) = 0.

Moreover,

3(x+ y + (x+ y)2) = 3(x+ x2) + 3(y + y2) + 3(xy + yx) = 3(xy + yx) = 0.

Since 6xy = 0, 3(xy − yx) = 0. Now from 2(xy − yx) = 0, we have xy − yx = 0 and hence
R is commutative.

20. If R is a ring with unit element 1 and φ is a homomorphism of R onto R′ prove that
φ(1) is the unit element of R′.

Proof. Since φ is onto, for any a ∈ R′ there is x ∈ R so that a = φ(x). Consequently,
a = φ(x) = φ(x · 1) = φ(x)φ(1) = aφ(1) and a = φ(x) = φ(1 · x) = φ(1)φ(x) = φ(1)a, so
that φ(1) is the unit element of R′.

21. If R is a ring with unit element 1 and φ is a homomorphism of R into an integral
domain R′ such that I(φ) 6= R, prove that φ(1) is the unit element of R′.

Proof. Note that φ(1) = φ(1 · 1) = φ(1)2 so that either φ(1) = 0 or φ(1) = 1. If former was
the case, I(φ) = R. Hence, φ(1) = 1 is the only possible case.
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