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Problems in Section 3.3 - 3.4.

1. If U is an ideal of R and 1 € U, prove that U = R.

Proof. Choose r € R. Since 1 € U and U is an ideal, r -1 = r € U. This shows that
U=R. O

2. If F is a field, prove its only ideals are (0) and F itself.

Proof. Let U be an ideal. If U = (0), there is nothing to prove. If U # (0), as U C F,
for any u # 0 € U, there exists its multiplicative inverse so that u=! -« =1 € U. Now by
Problem 1, U = R. O

3. Prove that any homomorphism of a field is either an isomorphism or takes each element
into 0.

Proof. Let ¢ : F — F’ be a homomorphism where F' and F” are fields. Note that

o(1) = o(1-1) = (1) - 6(1)

so that either ¢(1) = 1 or ¢(1) = 0. If former was the case, then ¢(x) = 0 if and only if
x = 0 so that ¢ is an isomorphism. If later was the case, then ¢ is a zero-map. O

4. If R is a commutative ring and a € R,
a) Show that aR = {ar : r € R} is a two-sided ideal of R.

Proof. We first show that aR is a subgroup of R under addition operation. Choose
ari,arg € aR. Then ary + arg = a(r; + r2) € aR so that aR is closed under addi-
tion. We have the additive identity 0 = a - 0 € aR, and the additive inverse a(—r) € aR
for each ar € aR. Hence, aR is a subgroup of R under addition.

Now we show that aR swallows up the multiplication from left and right by arbitrary ring
elements. Choose r € R. Since R is commutative, for any u = ar’ € aR, ru = r(ar’) =
(ra)r’ = (ar)r’ = a(rr’) € aR. Also, ur = (ar’)r = a(r'r) € aR. Therefore, aR is now a
two-sided ideal of R. O



b) Show by an example that this may be false if R is not commutative.

Proof. Suppose we take R to be the ring of all rational matrices of size 2 x 2. Set a =

1 0
<0 0).Then

0 0
But for r = (1 1>7

(02 o)= o)z

so that aR is not necessarily a two sided ideal if R is not commutative. O

5. If U and V are ideals of R, let U +V = {u+v|u € U,v € V}. Prove that U + V is
also an ideal.

Proof. Just merely observing U and V as subgroups of abelian group R under addition,
U +V is also a subgroup of R under addition. Now, we choose r € R. Then, for any u € U,
veV,r(u+v)=rut+rvelU+Vsince ru € U and rv € V as U and V are ideals of R.
So, (u+v)r € U 4+ V holds similarly. Thus, U 4+ V is an ideal in R. O

6. If U,V are ideals of R let UV be the set of all elements that can be written as finite
sums of elements of the form uv whre v € U and v € V. Prove that UV is an ideal of R.

Proof. 1t is possible to express UV as

Uv = {Zn:uzv,

=1

u; € Uyv; € V,REZ+}.

Note that Y ;" ujv; + Z;” ujv; = Z};““m upvr € UV so that UV is closed under addition.
Also, it clearly contains the additive identity 0, and the additive inverse — Y ! w;v; =
Yot (—ui)v; for each Y ' wv; in UV. Thus, UV is a subgroup of R under addition. Now
choose r € R. Consequently,

n n n
r- Zuivi = Z(rui)vi = Z(U;)Uz eUV
i=1 i=1 i=1
with some u} € U for each i = 1,2,--- ,n. Similar argument holds for the right multiplica-
tion of r, so that UV is an ideal of R. O



7. In Problem 6 prove that UV Cc UNV.

Proof. Note that since U and V are ideals,

n

Zuivi = Z(u;) eU, Zuivi = Z(Ug) eV
i=1 i=1

i=1 i=1
for some u; € U and v; € V. Hence, UV CUNV. O

8. If R is the ring of integers, let U be the ideal consisting of all multiples of 17. Prove
that if V' is an ideal of R and R D V D U then either V. = R or V = U. Generalize!

Proof. Note that every subgroup of cyclic group is cyclic, hence, V O U must be a form
of (m) where m > 0 is an integer, dividing 17. Thus, either m = 1 or m = 17. That is,
equivalently, V = R or V = U. This argument holds even if we change 17 into any prime
number. O

9. If U is an ideal of R, let 7(U) = {z € R: zu = 0 for allu € U}. Prove that r(U) is an
ideal of R.

Proof. Choose z,y € r(U). Then (z+y)u = zu+yu=0+0 =0 for all u € U so that r(U)
is closed under addition. Clearly, 0 € 7(U). Also, (—z)u = —(zu) = 0 so that —x € r(U)
for each x € r(U). Thus, r(U) is a subgroup of R under addition.

Now choose ' € R. Then (r'z)u = r'(zu) = 0 so that 'z € r(U) and (zr')u = z(r'u) =
zu' = 0 for some u' € U so that zr’ € r(U). Therefore, r(U) is an ideal of R. O

10. If U is an ideal of R let [R: U] = {x € R: rx € U for every r € R}. Prove that [R : U]
is an ideal of R and that it contains U.

Proof. Choose x,y € [R: U]. Then r(x +y) =rz+ry € U for all » € R so that [R: U] is
closed under addition. Clearly, 0 € [R: U]. Also, r(—z) = —(rz) € U so that —z € [R: U].
Hence, [R : U] is a subgroup of R under addition.

Now choose 7 € R. Then r(r'z) = (rr')z € U so that v’z € [R : U]. Also, r(zr') =
(rz)r’ € U since rx € U and U is an ideal. Therefore, we conclude that [R : U] is an ideal
of R. O

11. Let R be a ring with unit element. Using its elements we define a ring R by defining
a®b=a+b+1,and a-b = ab+ a + b, where a,b € R and where the addition and
multiplication on the right-hand side of these relations are those of R.

a) Prove that R is a ring under the operations @ and -.



Proof. (Closedness of &) For all a,b€ R,a®b=a+b+1€ R.
(Associativity) For all a,b,c € R,

a®bdc)=a®(b+c+1l)=a+(b+c+1l)+1=(a+b+1)+c+1=(adb) Dec.

(Commutativity) For all a,b€ R, a®@b=a+b+1=b+a+1=bDa.
(Additive identity) Foralla € R,a® —1=a = —-1® a.

(Additive inverse) For alla # -1 € R, a® (—a—2) = -1 =(—a—2) @ a.
(Closedness of -) For all a,b € R, a-b=ab+a+ b€ R.

(Associativity) For all a,b,c € R,

a-(b-¢c)=a-(bc+b+c)=albc+b+c)+a+ (bc+b+c)
=abc+ac+bc+ab+a+b+c
=(ab+a+b)c+ (ab+a+b)+c=(a-b)-c.

(Distributive properties) For all a, b, c € R,

a-(bdc)=a-(b+c+1)
=alb+c+1)+a+(b+c+1)
=ab4+ac+2a+b+c+1,

where

(a-b)®(a-c)=(ab+a+b)® (ac+a+c)
=(ab+a+b)+(ac+a+c)+1
=ab+ac+2a+b+c+1

sothat a- (b®¢) = (a-b) ® (a-c). Further,

(a®b)-c=(a+b+1)-c
=(a+b+1c+(a+b+1)+c
=ac+bc+2c+a+b+1,

where

(a-c)®(b-c)=(act+a+c)®(bc+b+c)
=(ac+a+c)+(bc+b+c)+1
=ac+bc+2c+a+b+1

so that (a ®b)-c=(a-c) ® (b-c). Therefore, R is a ring.

b) What act as the zero-element of R?



Solution. —1 is clearly the zero-element. O
¢) What act as the unit-element of R?
Solution. Note that for all a # —1 € R,

a-u=a << aut+at+u=a << u=0.
Thus, 0 is the unit-element of R. O
d) Prove that R is isomorphic to R.
Proof. Define a mapping ¢ : R — R by ¢(a) = a — 1. Then it is a homomorphism since

plat+b)=(a+b)—1=(a-1)+(b-1)+1=¢(a) ®s(b),
plab) =ab—1=(a—-1)(b—-1)+(a—1)+ (b—1) = ¢(a) - (D).

Clearly ¢ is surjective. Also, ¢(a) = =1 <= a = 0, so that the kernel of ¢ is trivial.
Hence, ¢ induces an onto isomorphism between R and R. ]

12. In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices. Prove that this ring
has no ideals other than (0) and the ring itself.

Proof. Let U be a proper nontrivial ideal of R. If U = (0), there is nothing to prove.

Suppose U has a nonzero 2 matrix A = (ch Z) If det(A) # 0, it has the inverse A~' € R

sothat A='A =T c U, so that U = R. If det(A) = 0, for if a # 0,
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Hence U = R. If a = 0, since ad = bc, then b =0 or ¢ =0. If both b=c =0 and d =0,
then U = (0). If b=c=0 and d # 0,
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so that U = R. Now we assume that, WLOG, b = 0 and ¢ # 0. Additionally we can
assume that d # 0, since d = 0 is intrinsically the same case with above. So, we consider
a=>b=0and c,d # 0. Observe that

G C 06 o= 0w
D66 e
:>< 8>+<8 (1)>:<(1) ?)eU,

so that U = R. Hence we see that U = (0) or either U = R. O

o O

O =

13. In Example 3.1.8 we discussed the real quaternions. Using this as a model we define
the quaternions over the integers mod p, p an odd prime number, in exactly the same
way; however, now considering all symbols of the form g + a1t 4+ asj + ask, where a; are
integers mod p.

a) Prove that this is a ring with p* elements whose only ideals are (0) and the ring itself.

Proof. There are p* different elements possible in R, and R is clearly a ring with the
operations inherited from the quaternion ring over real. Now suppose U is an ideal of R.
If U = (0), there is nothing to prove. If U # (0), there is a a+bi + ¢j +dk € I and WLOG,
a # 0. Observe that:
ila+bi+cj+dk)yi=—a—bi+cj+dk
= (a+bi+cj+dk)—(—a—bi+cj+dk)=2a+2bi = a+bicl,
jla+bi)j=—-a+bi = (a+0bi)—(a—bi)=2a = 1€l

so that I = R. O
b) Prove that this ring is not a division ring.
Proof. Note that

qq = (a +bi+cj + dk)(a — bi — ¢j — dk) = a® + b* + * + d*

for a,b,c,d € Z,. In general, a,b,c,d need not be all 0 to satisfy A+ +E+d?=0.
Hence this admits a zero divisor in R. Therefore, R is not a division ring. We can also
make use of Wedderburn’s Theorem, which states that every finite division ring must be
commutative. O

14. For a € R let Ra = {xa : a € R}. Prove that Ra is a left-ideal of R.



Proof. Ra is clearly a subgroup of R under addition. Choose r € R. Then r(za) = (rz)a €
Ra so that Ra is a left ideal of R. O]

15. Prove that the intersection of two left-ideals of R is a left-ideal of R.

Proof. Let U and V be the left-ideals of R. We know that intersection of two subgroup is
again a subgroup. Now choose r € R. Then forw e UNV, rw € U,V so that uw € UNV.
Hence, U NV is a left-ideal of R. ]

16. What can you say about the intersection of a left-ideal and right-ideal of R?

Solution. Intersection of a left-ideal and right-ideal need not be a left-ideal of right-ideal.
For instance, suppose R is the ring of 2 x 2 rational matrices. Consider the ideals

= o )= o)leee)
=y o) ={ Deee)

so that the intersection is given by

UlﬂUg—{<g 8)

But this is neither a left ideal nor a right ideal, since
00 10 0 0 10 0 1 0 1
<1 o)'(o 0>_<1 0)¢U’ <o 0)'(0 0>_<0 0>¢U'

17. If Ris aring and a € R let 7(a) = {x € R : ax = 0}. Prove that r(a) is a right-ideal
of R.

and

aEQ}.

O

Proof. Choose z,y € r(a). Then a(z + y) = ax + ay = 0 so that r(a) is closed under
addition. Also, 0 € r(a). Further, a(—z) = —(az) = 0 for all x # 0 so that —z € r(a).
Therefore, r(a) is a subgroup of R under addition.

Now choose ' € R. Then a(zr) = (ax)r = 0 so that zr € r(a). Hence, r(a) is now a
right-ideal of R. 0

18. If R is aring and L is a left-ideal of R let A(L) = {z € R : za = 0 for alla € L}. Prove
that A(L) is a two-sided ideal of R.



Proof. Choose x,y € A(L). Then (x + y)a = za + ya = 0 for all @ € L so that A\(L) is
closed under addition. Also, 0 € A\(L). Further, (—x)a = —(xa) = 0 so that —x € A(L) for
all x € A(L). Hence A(L) is a subgroup of R under addition.

Now choose ' € R. Then (r'xz)a = r'(xa) = 0 so that 'z € A(L). Also, (zr')a = z(r'a) =
z(a') = 0 where a' € L, so that ar’ € A(L). Therefore, \(L) is a two-sided ideal of R. [

19. Let R be a ring in which 2® = z for every # € R. Prove that R is a commutative ring.

Proof. First note that (22)® = 2 = 62 = 0 for all x € R. Computing (z + y)? and

(z—y)3,

(z+y)? =z+y = 2%y + 2y + zy® + y2* + yry + y°z = 0,
(@-yP=x-y = 2’y +ayr—ay’ +ya® — yay — y’z =0,

so that on adding, 222y + 2zyx + 2yx? = 0. Multiplying 2 on left and right, we obtain
2xy + 22%yx + 2eya? =0, 2x%yx 4 2xyx® + 2y =0
so that 2(zy — yz) = 0. Now we calculate (x + 22)3. Consequently,
(z+2?)P =4z +2?)=2+2° = 3@ +2}) =0
Moreover,
3(x+y+ (x+y)?) =3+ 2%) +3(y +v?) + 3(xy + yx) = 3(xy + yx) = 0.

Since 6xy = 0, 3(zy — yx) = 0. Now from 2(zy — yx) = 0, we have xy — yz = 0 and hence
R is commutative. O

20. If R is a ring with unit element 1 and ¢ is a homomorphism of R onto R’ prove that
#(1) is the unit element of R'.

Proof. Since ¢ is onto, for any a € R’ there is x € R so that a = ¢(z). Consequently,

0= 6(x) = oz 1) = 9(x)6(1) = ad(1) and a = B(x) = ¢(1 - z) = $(1)6(x) = H(1)a, 50
that ¢(1) is the unit element of R'. O

21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into an integral
domain R’ such that I(¢) # R, prove that ¢(1) is the unit element of R’

Proof. Note that ¢(1) = ¢(1-1) = ¢(1)? so that either ¢(1) = 0 or ¢(1) = 1. If former was
the case, I(¢) = R. Hence, ¢(1) = 1 is the only possible case. O



