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Problems in the Section 2.4. ∼ 2.5.

1. If H and K are subgroups of G, show that H ∩ K is a subgroup of G. (Can you see
that the same proof shows that the intersection of any number of subgroups of G, finite or
infinite, is again a subgroup of G?

Proof. Let x, y ∈ H ∩K. Since x, y are elements of both H and K, xy is also an element of
both H and K. Hence, xy ∈ H ∩K. Further, x−1 is also in both H and K. This implies
that x−1 ∈ H ∩ K. Therefore, H ∩ K is a subgroup of G. Also, this same proof can be
applied to intersection of any number of subgroups of G, either finite or infinite.

2. Let G be a group such that the intersection of all its subgroups which are different from
(e) is a subgroup different from (e). Prove that every element in G has finite order.

Proof. Suppose G has an element a of infinite order. Then (a) is an infinite cyclic subgroup

of G. Now consider the intersection of every subgroup of (a), namely,
⋂
n∈N

(an). Any element

in this subgroup must be of the form am,m ∈ Z, where m is the multiple of all n ∈ N. The

only possible value of m is m = 0. Hence,
⋂
n∈N

(an) = (e), a contradiction.

3. If G has no nontrivial subgroups, show that G must be finite of prime order.

Proof. First we show that G is of finite order. If not, then for a ∈ G, (a) is a subgroup
of G. Suppose it is nontrivial, then we further consider (a2) ⊂ (a), which is a nontrivial
subgroup of (a) and hence of G, a contradiction. Therefore, G is of finite order. Moreover,
G must be cyclic as for any a 6= e ∈ G, (a) is a nontrivial subgroup of G and hence (a) = G.
Now we assume that G is of non-prime order, say o(G) = nm. If (a) = G then (an) is a
nontrivial subgroup of G with order m, contradicting that G has no nontrivial subgroup.
Thus, G must be finite of prime order.

4. a) If H is a subgroup of G, and a ∈ G let aHa−1 =
{
aha−1 : h ∈ H

}
. Show that aHa−1

is a subgroup of G.
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Proof. Choose x, y ∈ aHa−1. Then we can write x = ah1a
−1, y = ah2a

−1 for some
h1, h2 ∈ H. Observe that

xy = (ah1a
−1)(ah2a

−1) = a(h1h2)a
−1 ∈ aHa−1, x−1 = ah−11 a−1 ∈ aHa−1.

Now we have aHa−1 as a subgroup of G.

b) If H is finite, what is o(aHa−1)?

Proof. Define a mapping f : aHa−1 → H by f(x) = a−1xa. Then f is a bijection. Hence,
o(aHa−1) = o(H).

5. For a subgroup H of G define the left coset aH of H in G as the set of all elements of
the form ah, h ∈ H. Show that there is a one-to-one correspondence between the set of all
left cosets of H in G and the set of right cosets of H in G.

Proof. Let φ be a mapping between the set of left cosets of H and the set of right cosets
of H, defined in a way that: φ(aH) = Ha−1. We show that φ is a bijection. Suppose
φ(aH) = φ(bH). Then Ha−1 = Hb−1 =⇒ a−1b ∈ H =⇒ aH = bH. This shows that φ
is injective. Further, for any right coset Hc, we have φ(c−1H) = Hc. This prove that φ is
surjective. Therefore, φ is bijective and hence establishing an one-to-one correspondence
between the set of all left cosets and the set of right cosets(of H in G).

6. Write out all the right cosets of H in G where
a) G = (a) is a cyclic group of order 10 and H = (a2) is the subgroup of G generated by
a2.

Solution. There are two right cosets, namely (a2) and (a2)a.

b) G as in part a), H = (a5) is the subgroup of G generated by a5.

Solution. There are five right cosets: (a5), (a5)a, (a5)a2, (a5)a3, (a5)a4.

c) G = A(S), S = {x1, x2, x3}, and H = {σ ∈ G : x1σ = x1}.

Solution. With the notation used in section 2.1, we can rewrite H as H = {id, ψφ}. There
are three right cosets then: H,Hψ = {ψ, φ}, Hψ2 = {ψ2, ψ2φ}.

7. Write out all the left cosets of H in G for H in G as in parts a), b), c) of Problem 6.

Proof. We have the left cosets and right cosets same for the cases a) and b). For c), We
have the three left cosets namely: H,ψH = {ψ,ψ2φ}, ψ2H = {ψ2, φ}.

8. Is every right coset of H in G a left coset of H in G in the groups of Problem 6?

Proof. No. Compare the list of left cosets and right cosets of H for the case c).
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9. Suppose that H is a subgroup of G such that whenever Ha 6= Hb then aH 6= bH. Prove
that gHg−1 ⊂ H for all G ∈ G.

Proof. For the sake of contradiction, suppose there is an g ∈ G and h ∈ H such that
ghg−1 6∈ H. Note that ghH = gH and hence by the given condition H(gh) = Hg =⇒
ghg−1 ∈ H. But this is clearly a contradiction.

10. Let G be a group of integers under addition, Hn the subgroup consisting of all multiples
of a fixed integer n in G. Determine the index of Hn in G and write out all the right cosets
of Hn in G.

Proof. There are n distinct right cosets of Hn in G:

Hn, ,Hn + 1, Hn + 2, · · · , Hn + (n− 1).

Hence the index of Hn in G is n.

11. In Problem 10, what is Hn ∩Hm?

Proof. Elements in Hn ∩Hm must form a set of all multiples of n and m. That is, the set
of multiples of lcm(n,m), least common multiple of n and m. Clearly, every multiples of
lcm(n,m) is in both Hn and Hm. Therefore, Hn ∩Hm = Hlcm(n,m).

12. If G is a group and H,K are two subgroups of finite index in G, prove that H ∩K is
of finite index in G. Can you find an upper bound for the index of H ∩K in G?

Proof. Since a(H ∩K) = aH ∩aK for all a ∈ G and choices for each aH and aK are finite,
so does the number of a(H ∩K). Thus, H ∩K is of finite index in G. From our assertion,
it can be found that the multiple of indices of H and K is an upper bound for the index
of H ∩K in G.

13. If a ∈ G, define N(a) = {x ∈ G : xa = ax}. Show that N(a) is a subgroup of G. N(a)
is usually called the Normalizer or Centralizer of a in G.

Proof. For any x, y ∈ N(a), (xy)a = x(ya) = x(ay) = (xa)y = a(xy). Hence, xy ∈ N(a).
Also, xa = ax =⇒ a = x−1ax =⇒ ax−1 = x−1a, implying x−1 ∈ N(a). Therefore, N(a)
is a subgroup of G.

14. If H is a subgroup of G, then by the centralizer C(H) of H we mean the set {x ∈ G :
xh = hx all h ∈ H}. Prove that C(H) is a subgroup of G.

Proof. For any x, y ∈ C(H), h ∈ H, (xy)h = h(ya) = x(hy) = (xh)y = h(xy). Hence,
xy ∈ C(H). Also, xh = hx =⇒ h = x−1hx =⇒ hx−1 = x−1h, implying x−1 ∈ C(H).
Therefore, C(H) is a subgroup of G.
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15. The Center Z of a group is defined by Z = {z ∈ G : zx = xz all x ∈ G}. Prove that Z
is a subgroup of G. Can you recognize Z as C(T ) for some subgroup T of G?

Proof. This is a special case of Problem 14. Set H = G. That is, Z = C(G).

16. If H a subgroup of G, let N(H) = {a ∈ G : aHa−1 = H}. Prove that
a) N(H) is a subgroup of G.

Proof. For any x, y ∈ N(H), (xy)H(xy)−1 = x(yHy−1)x−1 = xHx−1 = H implying
xy ∈ N(H). Further, x−1Hx = x−1(xHx−1)x = H implying x−1 ∈ N(H). Hence, N(H)
is a subgroup of G.

b) N(H) ⊃ H.

Proof. Note that for all h ∈ H, hHh−1 = H trivially. Hence, H ⊂ N(H).

17. Give an example of a group G and a subgroup H such that N(H) 6= C(H). Is there
any containing relation between N(H) and C(H)?

Proof. Consider the group of quaternions, G = {±1,±i ± j,±k}, ij = k, jk = i, ki =
j, i2 = j2 = k2 = −1. Let H = {±1,±i}. By some calculations, we see that N(H) = G,
C(H) = H. Therefore, N(H) 6= C(H). Moreover, in general, if x ∈ C(H), xhx−1 = h for
all h ∈ H implying xHx−1 = H. Thus, x ∈ N(H) and hence, C(H) ⊂ N(H).

18. If H is a subgroup of G let

N =
⋂
x∈G

xHx−1.

Prove that N is a subgroup of G such that aNa−1 = N for all a ∈ G.

Proof. Note that for all a ∈ G, every element y ∈ G is expressible in the form y = ax for
some unique x ∈ G.Keeping this in mind, choose n ∈ N . Then, n ∈ xHx−1 for any x ∈ G.
Hence, ana−1 ∈ (ax)H(ax)−1 = yHy−1, for some y ∈ G. Since x arbitrary and each y
corresponding to x would be distinct by the choices of x, ana−1 ∈ xHx−1 for all x ∈ G.
Thus, aNa−1 ⊂ N . Similarly, N ⊂ aNa−1. Therefore, aNa−1 = N .

19. If H is a subgroup of finite index in G, prove that there is only a finite number of
distinct subgroups in G of the form aHa−1.

Proof. Suppose aH = bH. Then Ha−1 = Hb−1 implying aHa−1 = bHb−1. Since H is
of finite index, there is only a finite number of distinct subgroups of the form aHa−1 in
G.
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20. If H is of finite index in G prove that there is a subgroup N of G, contained in H, and
of finite index in G such that aNa−1 = N for all a ∈ G. Can you give an upper bound for
the index of this N in G?

Proof. Let N =
⋂
x∈G

xHx−1. From the definition, N is clearly contained in H. By Problem

18, N is a group satisfying aNa−1 = N for all a ∈ G. Moreover, by Problem 19, there are
finitely many distinct subgroups of G of the form xHx−1. Thus, N is an intersection of
finitely many subgroup of G. Moreover, since o(H) = o(xHx−1) and H is of finite index

in G, so does every xHx−1. Now, by Problem 12, since N =
⋂
x∈G

xHx−1, intersection of

finitely many subgroups of finite indices, N is of finite index in G. To find an upper bound
for the index of N , let k denote the number of distinct subgroups of the form xHx−1 and
n denote the index of H in G. By applying the Problem 12 again, we see that nk is an
upper bound for index of N in G.

21. Let the mapping τab for a, b real numbers, map the reals into the reals by the rule
τab : x→ ax+ b. Let G = {τab : a 6= 0}. Prove that G is a group under the composition of
mappings. Find the formula for τabτcd.

Proof. Let τab, τcd ∈ G. Then τab · τcd = a(cx + d) + b = acx + (ad + b) = τ(ac)(ad+b) ∈ G.
We have the identity element τ10 = x. For the inverse element(of τab), take τ 1

a
−b
a

. Hence,

G is a group under composition of mappings.

22. In Problem 21, let H = {τab ∈ G : a ∈ Q}. Show that H is a subgroup of G. List all
the right cosets of H in G, and all the left cosets of H in G. From this show that every
left coset of H in G is right coset of H in G.

Proof. Note that multiple of two rationals is rational and inverse of rational is rational.
Keeping this in mind and applying the method used in Problem 21, it is easy to see that H
is a subgroup of G. List of all the right cosets can be expressed as Hτrs, where 0 6= r, s ∈ R.
Similarly, for left cosets, τrsH. In fact, every left coset and right coset is same, since for
any t = hτrs, h ∈ H,h = τab,

t = τab · τrs = (ar)x+ (as+ b) = τrs · τr, (a−1)s+b
d

∈ τrsH.

This implies Hτrs = τrsH for all r 6= 0, s ∈ R.

23. In the group G of Problem 21, let N = {τ1b ∈ G}. Prove
a) N is a subgroup of G.

Proof. For any τ1a, τ1b ∈ N , τ1aτ1b = τ1,b+a ∈ N . Moreover, τ1,−a is the inverse element
for each τ1a ∈ N . Hence N is a subgroup of G.
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b) If a ∈ G, n ∈ N , then ana−1 ∈ N .

Proof. Note that for any τab ∈ G, τ1c ∈ N ,

τab · τ1c · τ 1
a
,−b

a
= τ1,ac ∈ N.

24. Let G be a finite group whose order is not divisible by 3. Suppose that (ab)3 = a3b3

for all a, b ∈ G. Prove that G must be abelian.

Proof. Consider a mapping φ : G→ G defined as φ(x) = x3. Then φ is an homomorphism
and injective since x3 = e holds only for x = e, otherwise x has order divisible by 3.
Therefore, by Pigeonhole Principle, φ is a bijetion. Hence, every element in G can be
expressed uniquely as a cube of an element in G. Now we see that

(ab)4 = ((ab)2)2 = (b2a2)2 = (a2)2(b2)2 = a4b4

implying

(ab)4 = a4b4 =⇒ (ba)3 = a3b3 =⇒ b3a3 = a3b3

for all a, b ∈ G. Now for any x, y ∈ G we can set x = a3, y = b3. Then we see that G is
abelian.

25. Let G be an abelian group and suppose that G has elements of order m and n respec-
tively. Prove that G has an element whose order is the least common multiple of m and
n.

Proof. First, we prove the case when gcd(m,n) = 1, i.e. m,n are relatively prime. Let a, b
be the elements of G with order m,n respectively. Clearly,

(ab)mn = (am)n(bn)m = e.

Let k be the order of ab. Then we know that k ≤ mn. Moreover,

e = (ab)km = bkm =⇒ n|km =⇒ n|k,
e = (ab)kn = akn =⇒ m|kn =⇒ m|k

implying lcm(m,n) = mn|k =⇒ k = mn. Therefore, if gcd(m,n) = 1, there exists an ele-
ment of order lcm(m,n) = mn. Now, suppose given m,n are not relatively prime. Say m =∏
i p
mi
i , n =

∏
i p
mi
i where pi are distinct primes. Note that lcm(m,n) =

∏
i p

max(mi,ni)
i .

Now we define

m′ =
∏
i∈M

pmi
i , n′ =

∏
i∈N

pni
i
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where M = {i : mi ≥ ni}, N = {i : mi < ni}. We see that a′ = am/m
′

has order of
m′ and b′ = bn/n

′
has order of n′ and (m′, n′) = 1. Hence, G has an element of order

m′n′ = lcm(m,n).

26. If an abelian group has subgroups of orders m and n, respectively, then show that it
has a subgroup whose order is the least common multiple of m and n.

Proof. We rather prove this problem in more sophisticated manner. That is, we assume the
following lemma: If a finite abelian group G exists and d is a positive integer such that d
divides o(G), then there is a subgroup of G of order d. This comes from the fact that every
finite abelian group can be expressed as a direct product of sylow subgroups, expressing d
into product of power of primes and taking appropriate subgroups in the direct product.
Now, we set H and K be the subgroup of G with orders m and n respectively. Then we
have

o(HK) =
o(H)o(K)

o(H ∩K)
.

Note that by Lagrange’s theorem, o(H ∩ K) divides both o(H) = m, o(K) = n. Hence,
gcd(m,n)|o(H ∩ K). Moreover, lcm(m,n)|o(HK) from the above identity. Since HK is
abelian, there exists a subgroup of HK(hence of G) of order lcm(m,n).

27. Prove that any subgroup of a cyclic group is itself a cyclic group.

Proof. Let G = (a) for some a ∈ G. Let H be a subgroup of G. Since G is cyclic,
H constitutes elements of the form ak. Let k be the smallest positive integer such that
ak ∈ H. We claim that H = (ak). Assume am ∈ H. Then there exists integers q, r such
that m = qk + r, 0 ≤ r < k. Since am−qk ∈ H, ar ∈ H. But this contradicts the definition
of k. Thus, every elements of H is of the form (ak)q, where q is an integer. Therefore, H
is a cyclic group.

28. How many generators does a cyclic group of order n have?

Proof. We claim that there are φ(n) generators for a cyclic group of order n. Here, φ is
the euler totient function. Let G = (a). Suppose we consider ak, k|n. Then clearly ak

has order strictly less than n so that it cannot generate G. Now we consider ak where
(k, n) = 1. (ak)n = e is trivial. If t is the order of ak, using the fact that there exists
integers µ, λ such that kµ+ nλ = 1,

e = (ak)t = aktµ = at(1−nλ) = at =⇒ n|t =⇒ t = n,

implying the order of ak is n. Therefore, there are exactly φ(n) generators for a cyclic
group of order n.

29. Show that U8 is not a cyclic group.
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Proof. It is easy to see that U8 = {1, 3, 5, 7}. But 1 ≡ 1 mod 8, 32 ≡ 1 mod 8, 52 ≡ 1
mod 8, 72 ≡ 1 mod 8 implying none of the elements of U8 can generate the whole set.

30. Show that U9 is a cyclic group. What are all its generators?

Proof. Note that U9 = {1, 2, 4, 5, 7, 8}. 5, 8 are the generators of the U9.

31. Show that U17 is a cyclic group. What are all its generators?

Proof. Note that U17 = {1, 2, · · · , 16}. There are 8 generators: 3, 5, 6, 7, 10, 11, 12, 14.

32. Show that U18 is a cyclic group.

Proof. Note that U18 = {1, 5, 7, 11, 13, 17}. 5, 11 are the generators of U18.

33. Show that U20 is not a cyclic group.

Proof. Note that U20 = {1, 3, 7, 9, 11, 13, 17, 19}. But

1 ≡ 1, 34 ≡ 1, 74 ≡ 1, 92 ≡ 1,

112 ≡ 1, 134 ≡ 1, 174 ≡ 1, 192 ≡ 1

under modulo 20. Hence, U20 is not a cyclic group.

34. Show that both U25 and U27 are cyclic groups.

Proof. For both U25 and U27, 2 is a generator of each. Hence, both are cyclic.

35. Hazard a guess at what all the n such that Un is cyclic are.

Proof. We prove that Un is cyclic if and only if n = 1, 2, 4, pk, 2pk where p is an odd prime.
First, we state a famous lemma known as Chinese Remainder Theorem:

Lemma 1. If n = pq11 p
q2
2 · · · p

qk
k be the prime factorization of n, then

Z/nZ ' Z/pq11 Z× Z/pq22 Z× · · · × Z/pqkk Z. (1)

From this, we have that:

Un ' Upq11 × Upq22 × · · · × Upqkk . (2)

We introduce another lemma:

Lemma 2. For an abelian G, if G ' Zm×Zn, then G is cyclic if and only if gcd(m,n) = 1.
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Suppose n = 1. Then the group U1 is trivially cyclic. If n = 2, then U2 = {1} and hence,
cyclic. If n = 4, then U4 = {1, 3}. Since it is group of order 2, so it is cyclic. Now we
investigate the case for n is divisible by p, q where p, q are distinct odd primes. Note that
the order of Upk is φ(pk) = pk−1(p− 1). As we said that p, q divides n, n is expressible as

n = pkqs · · · and consequently by equation (2), Un ' Upk ×Uqs × · · · . For we assume that

Upk and Uqs are cyclic, since p− 1 and q − 1 are even, gcd(φ(pk), φ(qs)) > 1 and hence G
cannot be cyclic. Also, if we change q = 4 in our previous argument, we have the same
result. So if we prove that Upk is cyclic for every odd prime p and positive integer k > 1,

the possible substitute for Un to be cyclic are 1, 2, 4, pk, 2pk. Our task is now to prove Upk
is a cyclic group.

We first prove that Up is cyclic. Note that Up is isomorphic to multiplicative subgroup of
finite field Zp. Then consider a polynomial xd = 1, where d is a positive integer. Note
that in a field, number of elements satisfying xd = 1 is at most d. Therefore, applying the
argument of the Problem 38, we have that Up is cyclic. Now we show that Up2 is cyclic.
We introduce a new lemma:

Lemma 3. If g is a generator for Up and let k be an integer such that p - k, then either g
or g + kp generates Up2 .

Proof. Since the order of Up2 is φ(p2) = p(p − 1), g, g + kp have order dividing p(p − 1).
It is must that order of both g and g + kp be multiples of p − 1 otherwise they cannot
generate Up. So, the only possible choices are p(p − 1) and p − 1. We claim that at least
one of g and g + kp has order p(p − 1). For the sake of contradiction, assume they both
have order of p− 1. At then, we have

1 ≡ (g + kp)p−1 ≡ gp−1 +

(
p− 1

1

)
gp−2kp+

(
p− 1

2

)
gp−3(kp)2 + · · · (mod p2)

Note that gp−1 ≡ 1 (mod p) by Fermat’s little Theorem. Then the above equation can be
reduced into

1 ≡ 1 + (p− 1)gp−2kp (mod p2) ⇐⇒ 0 ≡ (p− 1)gp−2kp (mod p2).

But since p - (p− 1)gp−2k, this is a contradiction. Hence the lemma is proved.

Now we have that Up2 as a cyclic group. We shall further prove that Upk is cyclic for all
k > 2. Again, we introduce another lemma:

Lemma 4. Let p be an odd prime and a ≥ 1. Then,

(1 + kp)p
a ≡ 1 + kpa+1 (mod pa+2)
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Proof. If a = 1, we see that

(1 + kp)p ≡ 1 +

(
p

1

)
kp+ · · · (mod p3) ⇐⇒ (1 + kp)p = 1 + kp2 + n1p

3

for some n1 ∈ Z. Suppose we assume that the statement holds for some a ≥ 1, so

(1 + kp)p
a+1

= ((1 + kp)p
a
)p = (1 + kpa+1 + npa+2)p

for some n ∈ Z. Now we think the trinomial expansion of (1 + kpa+1 + npa+2)p:

∑
i+j+k=p

(
p

i, j, k

)
(1)i(kpa+1)j(npa+2)k.

We have several cases to consider. On summarzing, we result out that 1 and the term
involving no factors of npa+2 and only one kpa+1, that is, 1 and(

p

p− 1, 1, 0

)
kpa+1 = kpa+2,

are the only terms in the trinomial expansion which are not divisible by pa+3. Therefore,
we have

(1 + kp)p
a+1

= ((1 + kp)p
a
)p = 1 + kpa+2 +mpa+3

for some m ∈ Z, completing our induction procedure.

Now suppose we assume that g is the generator of Up2 . Since g is of order p(p−1) in modulo
p2, it has order pa(p−1), 0 ≤ a < m for modulo pm. All the possibilities divide pm−2(p−1)
except for pm−1(p − 1), hence it is enough to show that gp

m−2(p−1) 6≡ 1 mod pm. Since g
generates Up2 , we have gp−1 = 1 + kp for p - k. Now by Lemma 4,

gp
m−2(p−1) = (gp−1)p

m−2
= (1 + kp)p

m−2
= 1 + kpm−1 + npm

for some n ∈ Z, showing that gp
m−2(p−1) 6≡ 1 mod pm. Thus, the only possibility for the

order of g modulo pm is pm−1(p − 1) = φ(pm), g generates Upm . Hence, we have proved
that Upk is cyclic for all odd prime p.

Let’s get back to the beginning. Since we have shown that Upk is cyclic, Un is cyclic if and

only if n = 1, 2, 4, pk, 2pk. Our proof is now done.

36. If a ∈ G and am = e, prove that o(a) | m.

10



Proof. For the sake of contradiction, assume that o(a) = n - m. That is, m = nq + r for
some integers q, r such that 0 ≤ r < n. Since am = e,

e = am = anq+r = ar

implying n is not the smallest (positive) integer satisfying an = e, contradicting the defi-
nition of n. Hence, o(a) | m.

37. If in the group G, a5 = e, aba−1 = b2 for some a, b ∈ G, find o(b).

Proof. Note that

b4 = aba−1 · aba−1 = ab2a−1 = a(aba−1)a−1 = a2ba−2

=⇒ b8 = a2ba−2 · a2ba−2 = a2b2a−2 = a2(aba−1)a−2 = a3ba−3

=⇒ b16 = a3ba−3 · a3ba−3 = a3b2a−3 = a3(aba−1)a−3 = a4ba−4

=⇒ b32 = a4ba−4 · a4ba−4 = a4b2a−4 = a4(aba−1)a−4 = a5ba−5 = b =⇒ b31 = e.

Since 31 is prime, unless b is an identity, o(b) = 31.

38. Let G be a finite abelian group in which the number of solutions in G of the equation
xn = e is at most n for every positive integer n. Prove that G must be a cyclic group.

Proof. Let us define a set Ad for every d ∈ N as

Ad = {x ∈ G : xd = e, x is of order d}.

By the given condition, we have o(Ad) ≤ φ(d), where φ is the euler totient function.
Nevertheless,

n =
∑
d|n

o(Ad) ≤
∑
d|n

φ(d) = n,

implying An 6= ∅. Thus, there exists an element g ∈ An ⇐⇒ G = (g).

39. Let G be a group and A,B subgroups of G. If x, y ∈ G define x ∼ y if y = axb for
some a ∈ A, b ∈ B. Prove
a) The relation so defined is an equivalence relation.

Proof. We have x = exe = x, so that x ∼ x. Also, if x ∼ y, equivalently y = axb for
some a ∈ A, b ∈ B, so x = a−1yb−1, hence y ∼ x. Now suppose x ∼ y and y ∼ z. Then,
y = axb, z = a′yb′ for some a, a′ ∈ A, b, b′ ∈ B. Consequently, z = a′axbb′ = (a′a)x(bb′),
implying x ∼ z. Hence, the given relation is an equivalence relation.

b) The equivalence class of x is AxB = {axb : a ∈ A, b ∈ B}
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Proof. Since given set AxB is set of all the elements of the form axb, it is trivial that
equivalence class of x is AxB itself.

40. If G is a group, show that the number of elements in the double coset AxB is

o(A)o(B)

o(A ∩ xBx−1)
.

Proof. Let us define a mapping φ : AxB → AxBx−1 by φ(axb) = axbx−1. By the definition
itself, this mapping is clearly onto. Moreover, if axbx−1 = a′xb′x−1, then axb = a′xb′

implying a = a′, b = b′. Thus, φ is one-one, hence, bijective. Now, we have

o(AxB) = o(AxBx−1) =
o(A)o(xBx−1)

o(A ∩ xBx−1)
=

o(A)o(B)

o(A ∩ xBx−1)
.

41. If G is a finite group and A is a subgroup of G such that all double cosets AxA have
the same number of elements, show that gAg−1 = A for all g ∈ G.

Proof. Note that o(AeA) = o(A). Also from the Problem 40,

o(AxA) =
o(A)o(A)

o(A ∩ xAx−1)
=

o(A)2

o(A ∩ xAx−1)
.

Since by the hypothesis, o(AxA) = o(A) for all x ∈ G, we have that o(A∩xAx−1) = o(A).
Also, A ∩ xAx−1 ⊂ A. This implies that A ⊂ xAx−1. By changing x = g−1, we also have
A ⊂ g−1Ag =⇒ gAg−1 ⊂ A. Since g was arbitrary, gAg−1 = A for all g ∈ G.
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