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Problems in the section 2.1. ∼ 2.3.

1. In the following determine whether the systems described are groups. If they are not,
point out which of the group axioms fail to hold.
a) G = set of all integers, a · b ≡ a− b.

Solution. G is not a group. For instance,

1− (2− 1) = 1− 1 = 0 6= −2 = (1− 2)− 1,

which shows that the associative property is not preserved in G.

b) G = set of all positive integers, a · b = ab, the usual product of integers.

Solution. G is not a group. There is no inverse of 2 ∈ G in G.

c) G = a0, a1, · · · , a6 where {
ai · aj = ai+j if i+ j < 7,

ai · aj = ai+j−7 if i+ j ≥ 7

Solution. G is a group. We have the operation table as follows:

· a0 a1 a2 a3 a4 a5 a6
a0 a0 a1 a2 a3 a4 a5 a6
a1 a1 a2 a3 a4 a5 a6 a0
a2 a2 a3 a4 a5 a6 a0 a1
a3 a3 a4 a5 a6 a0 a1 a2
a4 a4 a5 a6 a0 a1 a2 a3
a5 a5 a6 a0 a1 a2 a3 a4
a6 a6 a0 a1 a2 a3 a4 a5

The above operation table shows that G is closed under associative operation ·. Clearly,
a0 is the only identity element. We also see that the inverses of ai are a7−i, respectively
(and also unique). Therefore, G is a group.
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d) G = set of all rational numbers with odd denominators, a · b ≡ a+ b, the usual addition
of rational numbers.

Solution. We shall slightly change the conditions of the question a bit, by re-defining the

set G as: G = set of all rational numbers
a

b
, b 6= 0 where b can be written odd. Now we

claim that G is a group: For any two arbitrary elements x, y ∈ G, it follows that

x =
a1

2b1 + 1
, y =

a2
2b2 + 1

, x · y =
2a1b2 + a1 + 2a2b1 + a2

(2b1 + 1)(2b2 + 1)
, a1, a2, b1, b2 ∈ Z

implying G is closed under the given operation. Associativity is clear, since the operation is
just inherited from the usual addition defined on Q, which is clearly associative. Moreover,

we have 0 =
0

1
as the identity element, and for any x ∈ G, −x ∈ G is the unique inverse.

Therefore, G is a group.

2. Prove that if G is an abelian group, then for all a, b ∈ G and for all integers n,
(a · b)n = an · bn.

Proof. We use mathematical induction. For n = 1, the hypothesis is trivially true. Suppose
we assume that the hypothesis is true for n = k, that is, (a ·b)k = ak ·bk. Now for n = k+1,

(a · b)k+1 = (a · b)(a · b)k = a · (a · b)k · b = a · ak · bk · b = ak+1 · bk+1,

implying that the hypothesis is valid for n = k + 1. Hence proved.

3. If G is a group such that (a · b)2 = a2 · b2 for all a, b ∈ G, show that G must be abelian.

Proof. From the given relation, by applying left and right cancellation law simultaneously
we get b · a = a · b. This shows that G is abelian.

4. If G is a group in which (a · b)i = ai · bi for three consecutive integers i for all a, b ∈ G,
show that G is abelian.

Proof. We can assume that

(a · b)n+1 = an+1 · bn+1, (a · b)n = an · bn, (a · b)n−1 = an−1 · bn−1

for some integer n ∈ Z. From the first and second equations, we have that

(a · b)(a · b)n = (a · b)n+1 = an+1 · bn+1 =⇒ a · b · an · bn = an+1 · bn+1

=⇒ b · an = an · b.

Similarly from the second and thrid equations, we have b · an−1 = an−1 · b. Moreover,

an · b = b · an = (b · an−1) · a = (an−1 · b) · a =⇒ a · b = b · a

implying G is abelian.
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5. Show that the conclusion of Problem 4 does not follow if we assume the relation (a ·b)i =
ai · bi for just two consecutive integers.

Proof. From the assumption, we have

(a · b)n+1 = an+1 · bn+1, (a · b)n = an · bn,

but (a ·b)n−1 6= an−1 ·bn−1. But if we assume G to be abelian(for the sake of contradiction),
we have (a · b)i = ai · bi for all i ∈ Z. This yields a contradiction and hence, G cannot be
abelian.

6. In S3 give an example of two elements x, y such that (x · y)2 6= x2 · y2.

Proof. Take x = φ, y = ψ · φ. Then we have

(x · y)2 = (φ · (ψ · φ))2 = (ψ2)2 = ψ 6= e = e · e = (φ)2 · (ψ · φ)2 = x2 · y2.

Hence proved.

7. In S3 show that there are four elements satisfying x2 = e and three elements satisfying
y3 = e.

Proof. By simple calculations, we can check that x = e, φ, φ · ψ,ψ · φ satisfies x2 = e and
y = e, ψ, ψ2 satisfies y3 = e.

8. If G is a finite group, show that there exists a positive integer N such that aN = e for
all a ∈ G.

Proof. Let us write G = {a1, a2, · · · , am}. Choose any ai ∈ G. Consider the following
sequence of the elements of G:

ai, a
2
i , a

3
i , · · · , ami , am+1

i , · · ·

Since every elements of the above sequence is in G, clearly aji = aki for some positive integers
j, k(k > j). Let ni = k−j. Then ani

i = e. Now set N = n1n2 · · ·nm. Consequently, aN = e
for any a ∈ G.

9. a) If the group G has three elements, show it must be abelian.

Proof. Let G = {e, a, b}, a group of three elements. It follows that a · b 6= a, b otherwise it
would imply that b and a are identity elements, respectively. The only possibility is that
a · b = e, and b · a = e for the same reason, vice versa. This implies a · b = b · a, so that G
is abelian.

b) Do part a) if G has four elements.
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Proof. For the sake of contradiction, assume that a ·b 6= b ·a for some non-identity elements
a, b ∈ G. Clearly, a · b 6= a, b. Suppose a · b = e. But this implies a = b−1, so that
b · a = e = a · b, which is a contradiction. So we have a · b 6= e, a, b, b · a, implying G
constitute of at least 5 or more elements. But G is a group of 4 elements, therefore a
contradiction.

c) Do part a) if G has five elements.

Proof. As in the part b), we have 5 distinct elements e, a, b, a · b, b · a in G. Consider
a ·a = a2 ∈ G. By simple case by case comparison, it is must that a2 = e. Now we consider
a · (b · a) = aba. This, in fact, must equal to one of the elements in G. But

aba = e =⇒ a · b = a =⇒ b = e ⊥,
aba = a =⇒ b · a = e ⊥,
aba = b =⇒ a · b = b · a−1 =⇒ a · b = b · a ⊥,
aba = a · b =⇒ a = e ⊥,
aba = b · a =⇒ a = e ⊥,

so that a contradiction. This shows that G must be abelian.

10. Show that if every element of the group G is its own inverse, then G is abelian.

Proof. It is easy to see that

a · b = a−1 · b−1 = (b · a)−1 = b · a

for all a, b ∈ G. Hence G is abelian.

11. If G is a group of even order, prove it has an element a 6= e satisfying a2 = e.

Proof. For any element a ∈ G, a has unique inverse b. Hence, we can pair them up, in a
way that

e, (a1, b1), (a2, b2), · · ·

where ai, bi ∈ G are non-identity distinct elements and satisfies ai · bi = e. Suppose one
of the element in G is of self-inverse, then we are done. If not, since the elements in each
pair (ai, bi) are distinct, and since G is of even order, this result in left over of an element
g ∈ G, with no distinct inverse element. This forces that g is of self inverse, and hence,
g2 = e.
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12. Let G be a nonempty set closed under an associative product, which in addition
satisfies:
a) There exists an e ∈ G such that a · e = a for all a ∈ G.
b) Give a ∈ G, there exists an element y(a) ∈ G such that a · y(a) = e. Prove that G must
be a group under this product.

Proof. Note that

e · a = (a · y(a)) · (a · e)
= a · y(a) · a · (y(a) · y(y(a)))

= a · y(a) · y(y(a))

= a · e

and

y(a) · a = y(a) · (a · e)
= y(a) · a · (y(a) · y(y(a)))

= y(a) · y(y(a))

= e

These finish the proof.

13. Prove, by an example, that the conclusion of Problem 12 is false if we assume instead:
a) There exists an e ∈ G such that a · e = a for all a ∈ G. b) Given a ∈ G, there exists
y(a) ∈ G such that y(a) · a = e.

Proof. Consider the set G =

{(
x x
y y

)
: x, y are non negative rationals, not both zero

}
.

By setting e =

(
1 1
0 0

)
, we have(
x x
y y

)
· e =

(
x x
y y

)
·
(

1 1
0 0

)
=

(
x x
y y

)
for all x, y. Morever, by setting y(a) =

( 1
x+y

1
x+y

0 0

)
, it is easy to see that

y(a) ·
(
x x
y y

)
=

( 1
x+y

1
x+y

0 0

)
·
(
x x
y y

)
=

(
1 1
0 0

)
= e.

But G is not a group, since

e · a =

(
1 1
0 0

)
·
(
x x
y y

)
=

(
x+ y x+ y

0 0

)
6=
(
x x
y y

)
= a.
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14. Suppose a finite set G is closed under an associative product and that both cancellation
laws hold in G. Prove that G must be a group.

Proof. Let a ∈ G. By considering the infinite collection a, a2, a3, · · · , since G is finite, there
must be positive integers k, l(k > l) satisfying ak = al. Let e = ak−l. Now for any b ∈ G,
b · ak = b · al =⇒ b · ak−l = b. For the inverse element, we set a−1 = ak−l−1. Then
a · a−1 = a · ak−l−1 = ak−l = e. Now with the help of Problem 12, G is now a group.

15. a) Using the result of Problem 14, prove that the nonzero integer modulo p, p a prime
number, form a group under multiplication mod p.

Proof. Note that the given set is finite and closed under multiplication mod p. What we
have to show is, in this set, the left and right cancellation laws must hold. But from the
basic number theoretic discussion, whenever gcd(a, p) = 1,

ab ≡ ac mod p =⇒ b ≡ c mod p, ba ≡ bc mod p =⇒ b ≡ c mod p.

Now we apply the result of Problem 14. Since every elements a in the set is relatively
prime to p, above relation holds entirely in the set. Thence given set is a group.

b) Do part a) for the nonzero integers relatively prime to n under multiplication mod n.

Proof. Just change p into n in the above discussion. Then we are done.

16. In Problem 14 show by an example that if one just assumed one of the cancellation
laws, then the conclusion need not follow.

Proof. Let G be the given set. Define a binary operation · : G×G→ G by x · y = y. Then
for any x, y, z ∈ G,

x · (y · z) = x · z = z = y · z = (x · y) · z

implying the operation is associative, and

x · y = x · z =⇒ y = z

implying left cancellation law holds. But the clearly right cancellation law does not hold.

17. Prove that in Problem 14 infinite examples exist, satisfying the conditions, which are
not groups.

Proof. Consider the set of all non-negative integers. Then clearly it is closed under usual
addition of the integers, satisfying both the cancellation laws. But there is no inverse of
every positive integers, proving that it is not a group.
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18. For any n > 2 construct a non-abelian group of order 2n.

Proof. Define G by:

G = {xiyj : i = 0, 1, j = 0, 1, 2, · · · , n− 1, x2 = e, yn = e, xyx−1 = y−1}.

Clearly G is a non-abelian group of order 2n. For a detailed proof, you can refer to the
Problem 17 of section 2.7.

19. If S is a set closed under an associative operation, prove that no matter how you
bracket a1a2 · · · an, retaining the order of the elements, you get the same element in S
(e.g., (a1 · a2) · (a3 · a4) = a1 · (a2 · (a3 · a4)); use induction on n.

Proof. If n = 1, then it is trivial. Suppose we use strong induction on n, that is, the way
of bracketing the elements of number less than n, with retaining its order, does not change
its output. Now considering any arbitrary bracket-ization of a1, a2, · · · an, there must be
an outermost bracket(this may not be unique), with at least one or more elements ai lying
outside of that specific bracket. Then this bracket must consist of at most n− 1 elements
of the S. Applying induction hypothesis, we can just purely consider the elements in this
bracket as a single element, resulting into at most n − 1 product of elements. But by
applying induction hypothesis again, we are done.

20. Let G be th set of all real 2 × 2 matrices

(
a b
c d

)
, where ad − bc 6= 0 is a rational

number. Prove that G forms a group under matrix multiplication.

Proof. Let A ∈ G,A =

(
a b
c d

)
. By the definition of determinant, ad − bc = det(A).

Suppose A,B ∈ G. Then by the property of determinant, det(AB) = det(A) det(B). As
det(A), det(B) 6= 0 and rational, so does det(AB). Hence, G is closed under usual matrix

multiplication. Associativity also holds clearly. The identity element is e =

(
1 0
0 1

)
. For

the inverse element of A ∈ G, just take the well known A−1 =
1

ad− bc

(
d −b
−c a

)
. Now

we see that G is a group.

21. Let G be the set of all real 2× 2 matrices

(
a b
0 d

)
, where ad 6= 0. Prove that G forms

a group under matrix multiplication. Is G abelian?

Proof. Let A =

(
a b
0 d

)
, B =

(
p q
0 r

)
∈ G. Then

A ·B =

(
a b
0 d

)(
p q
0 r

)
=

(
ap aq + br
0 dr

)
∈ G.
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Hence G is closed under matrix multiplication. Associativity is also clear. We also take

e =

(
1 0
0 1

)
as the identity element, and inverse element of A ∈ G as A−1 =

1

ad

(
d −b
0 a

)
.

Therefore, G is a group. But it is not abelian, since(
1 2
0 1

)(
1 3
0 2

)
=

(
1 7
0 2

)
6=
(

1 5
0 2

)
=

(
1 3
0 2

)(
1 2
0 1

)
.

22. Let G be the set of all real 2× 2 matrices

(
a 0
0 a−1

)
, where a 6= 0. Prove that G is an

abelian group under matrix multiplication.

Proof. Let A =

(
a 0
0 a−1

)
, B =

(
b 0
0 b−1

)
∈ G. Then

A ·B =

(
a 0
0 a−1

)(
b 0
0 b−1

)
=

(
ab 0
0 (ab)−1

)
=

(
b 0
0 b−1

)(
a 0
0 a−1

)
= B ·A.

Hence G is closed under matrix multiplication and abelian. Associativity is also clear.

We also take e =

(
1 0
0 1

)
as the identity element, and inverse element of A ∈ G as

A−1 =

(
a−1 0
0 a

)
. Therefore, G is an abelian group.

23. Construct in the G of Problem 21 a subgroup of order 4.

Proof. Let H =

{(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)}
. It is easy to see that they

are closed under matrix multiplication. We have the identity element

(
1 0
0 1

)
. Moreover,

every elements are of self-inverses. Therefore, H is a subgroup of G of order 4.

24. Let G be the set of all 2 × 2 matrices

(
a b
c d

)
where a, b, c, d are integers modulo 2,

such that ad− bc 6= 0. Using matrix multiplications as the operation in G, prove that G is
a group of order 6..

Proof. Checking G a group can be done with the help of Problem 14. We now show that
G is a group of order 6. In fact, we shall prove a more general result, that is, finding the
order of such group where integers are given with modulo p, p a prime number. For an
arbitrary element A ∈ G, possible numbers of filling the first low in the matrix is p2. Since
we have ad − bc 6= 0, we discard the possibilities of filling the low with all zero. Hence,
we have p2 − 1 possibilities of filling up the first low. Now, we fill the second low of the
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matrix. The condition ad− bc 6= 0 implies that the first low and second low in the matrix
must be linearly independent, so that we discard the possibilities that second low being the
multiple of the first low, that is, p possibilities. Hence there are p2−p possibilities of filling
up the second low for each given fixed first low. Consequently, there are (p2 − 1)(p2 − p)
elements in G. Let p = 2. Then there are (22− 1)(22− 2) = 6 elements in G. This is to be
proved.

25. a) Let G be the set of all 2 × 2 matrices

(
a b
c d

)
where ad − bc 6= 0 and a, b, c, d are

integers modulo 3, relative to matrix multiplication. Show that o(G) = 48.

Proof. Using the arguments made in Problem 24, the order of G is (32−1)(32−3) = 48.

b) If we modify the example of G in part a) by insisting that ad − bc = 1, then what is
o(G)?

Proof. We again prove a more general result, that is, for the mod p, p a prime number. Note
that any element in G can be made into determinant 1 by dividing(mod p) the second row

by 1, 2, · · · , p−1. Hence there are
(p2 − 1)(p2 − p)

p− 1
= p(p2−1) elements, with determinant

1. For p = 3, there are 24 elements.

26. a) Let G be the set of all 2 × 2 matrices

(
a b
c d

)
where and a, b, c, d are integers

modulo p, p a prime number, such that ad − bc 6= 0. G forms a group relative to matrix
multiplication. what is o(G)?
sol) From the arguments made in Problem 24 25, we know that o(G) = (p2 − 1)(p2 − p).

b) Let H be the subgroup of the G of part a) defined by

H =

{(
a b
c d

)
∈ G : ad− bc = 1

}
.

What is o(H)?
sol) From the arguments made in Problem 24 25, we know that o(H) = p(p2 − 1).
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